Types of Asymptotic Notations in Complexity Analysis of Algorithms
Last Updated :
13 Jul, 2024
We have discussed Asymptotic Analysis, and Worst, Average, and Best Cases of Algorithms. The main idea of asymptotic analysis is to have a measure of the efficiency of algorithms that don't depend on machine-specific constants and don't require algorithms to be implemented and time taken by programs to be compared. Asymptotic notations are mathematical tools to represent the time complexity of algorithms for asymptotic analysis.
Asymptotic Notations:
- Asymptotic Notations are mathematical tools used to analyze the performance of algorithms by understanding how their efficiency changes as the input size grows.
- These notations provide a concise way to express the behavior of an algorithm's time or space complexity as the input size approaches infinity.
- Rather than comparing algorithms directly, asymptotic analysis focuses on understanding the relative growth rates of algorithms' complexities.
- It enables comparisons of algorithms' efficiency by abstracting away machine-specific constants and implementation details, focusing instead on fundamental trends.
- Asymptotic analysis allows for the comparison of algorithms' space and time complexities by examining their performance characteristics as the input size varies.
- By using asymptotic notations, such as Big O, Big Omega, and Big Theta, we can categorize algorithms based on their worst-case, best-case, or average-case time or space complexities, providing valuable insights into their efficiency.
There are mainly three asymptotic notations:
- Big-O Notation (O-notation)
- Omega Notation (Ω-notation)
- Theta Notation (Θ-notation)
1. Theta Notation (Θ-Notation):
Theta notation encloses the function from above and below. Since it represents the upper and the lower bound of the running time of an algorithm, it is used for analyzing the average-case complexity of an algorithm.
.Theta (Average Case) You add the running times for each possible input combination and take the average in the average case.
Let g and f be the function from the set of natural numbers to itself. The function f is said to be Θ(g), if there are constants c1, c2 > 0 and a natural number n0 such that c1* g(n) ≤ f(n) ≤ c2 * g(n) for all n ≥ n0
Theta notationMathematical Representation of Theta notation:
Θ (g(n)) = {f(n): there exist positive constants c1, c2 and n0 such that 0 ≤ c1 * g(n) ≤ f(n) ≤ c2 * g(n) for all n ≥ n0}
Note: Θ(g) is a set
The above expression can be described as if f(n) is theta of g(n), then the value f(n) is always between c1 * g(n) and c2 * g(n) for large values of n (n ≥ n0). The definition of theta also requires that f(n) must be non-negative for values of n greater than n0.
The execution time serves as both a lower and upper bound on the algorithm's time complexity.Â
It exist as both, most, and least boundaries for a given input value.
A simple way to get the Theta notation of an expression is to drop low-order terms and ignore leading constants. For example, Consider the expression 3n3 + 6n2 + 6000 = Θ(n3), the dropping lower order terms is always fine because there will always be a number(n) after which Θ(n3) has higher values than Θ(n2) irrespective of the constants involved. For a given function g(n), we denote Θ(g(n)) is following set of functions.Â
Examples :
{ 100 , log (2000) , 10^4 } belongs to Θ(1)
{ (n/4) , (2n+3) , (n/100 + log(n)) } belongs to Θ(n)
{ (n^2+n) , (2n^2) , (n^2+log(n))} belongs to Θ( n2)
Note: Θ provides exact bounds.
2. Big-O Notation (O-notation):
Big-O notation represents the upper bound of the running time of an algorithm. Therefore, it gives the worst-case complexity of an algorithm.
.It is the most widely used notation for Asymptotic analysis.
.It specifies the upper bound of a function.
.The maximum time required by an algorithm or the worst-case time complexity.
.It returns the highest possible output value(big-O) for a given input.
.Big-O(Worst Case) It is defined as the condition that allows an algorithm to complete statement execution in the longest amount of time possible.
Â
If f(n) describes the running time of an algorithm, f(n) is O(g(n)) if there exist a positive constant C and n0 such that, 0 ≤ f(n) ≤ cg(n) for all n ≥ n0
It returns the highest possible output value (big-O)for a given input.
The execution time serves as an upper bound on the algorithm's time complexity.

Mathematical Representation of Big-O Notation:
O(g(n)) = { f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 }
For example, Consider the case of Insertion Sort. It takes linear time in the best case and quadratic time in the worst case. We can safely say that the time complexity of the Insertion sort is O(n2).Â
Note: O(n2) also covers linear time.Â
If we use Θ notation to represent the time complexity of Insertion sort, we have to use two statements for best and worst cases:Â
- The worst-case time complexity of Insertion Sort is Θ(n2).
- The best case time complexity of Insertion Sort is Θ(n).Â
The Big-O notation is useful when we only have an upper bound on the time complexity of an algorithm. Many times we easily find an upper bound by simply looking at the algorithm. Â
 Examples :
{ 100 , log (2000) , 10^4 } belongs to O(1)
U { (n/4) , (2n+3) , (n/100 + log(n)) } belongs to O(n)
U { (n^2+n) , (2n^2) , (n^2+log(n))} belongs to O( n^2)Â
Note: Here, U represents union, we can write it in these manner because O provides exact or upper bounds .
3. Omega Notation (Ω-Notation):
Omega notation represents the lower bound of the running time of an algorithm. Thus, it provides the best case complexity of an algorithm.
The execution time serves as a lower bound on the algorithm's time complexity.
It is defined as the condition that allows an algorithm to complete statement execution in the shortest amount of time.
Let g and f be the function from the set of natural numbers to itself. The function f is said to be Ω(g), if there is a constant c > 0 and a natural number n0 such that c*g(n) ≤ f(n) for all n ≥ n0

Mathematical Representation of Omega notation :
Ω(g(n)) = { f(n): there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0 }
Let us consider the same Insertion sort example here. The time complexity of Insertion Sort can be written as Ω(n), but it is not very useful information about insertion sort, as we are generally interested in worst-case and sometimes in the average case.Â
Examples :
{ (n^2+n) , (2n^2) , (n^2+log(n))} belongs to Ω( n^2)
U { (n/4) , (2n+3) , (n/100 + log(n)) } belongs to Ω(n)
U { 100 , log (2000) , 10^4 } belongs to Ω(1)
Note: Here, U represents union, we can write it in these manner because Ω provides exact or lower bounds.
Properties of Asymptotic Notations:Â
1. General Properties:
If f(n) is O(g(n)) then a*f(n) is also O(g(n)), where a is a constant.
Example:
f(n) = 2n²+5 is O(n²)Â
then, 7*f(n) = 7(2n²+5) = 14n²+35 is also O(n²).
Similarly, this property satisfies both Θ and Ω notation.
We can say,
If f(n) is Θ(g(n)) then a*f(n) is also Θ(g(n)), where a is a constant.Â
If f(n) is Ω (g(n)) then a*f(n) is also Ω (g(n)), where a is a constant.
2. Transitive Properties:
If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n)).
Example:
If f(n) = n, g(n) = n² and h(n)=n³
n is O(n²) and n² is O(n³) then, n is O(n³)
Similarly, this property satisfies both Θ and Ω notation.
We can say,
If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) = Θ(h(n)) .
If f(n) is Ω (g(n)) and g(n) is Ω (h(n)) then f(n) = Ω (h(n))
3. Reflexive Properties:Â
Reflexive properties are always easy to understand after transitive.
If f(n) is given then f(n) is O(f(n)). Since MAXIMUM VALUE OF f(n) will be f(n) ITSELF!
Hence x = f(n) and y = O(f(n) tie themselves in reflexive relation always.
Example:
f(n) = n² ; O(n²) i.e O(f(n))
Similarly, this property satisfies both Θ and Ω notation.  Â
We can say that,
If f(n) is given then f(n) is Θ(f(n)).
If f(n) is given then f(n) is Ω (f(n)).
4. Symmetric Properties:Â
If f(n) is Θ(g(n)) then g(n) is Θ(f(n)).
Example:
If(n) = n² and g(n) = n²
then, f(n) = Θ(n²) and g(n) = Θ(n²)
This property only satisfies for Θ notation.
5. Transpose Symmetric Properties:
If f(n) is O(g(n)) then g(n) is Ω (f(n)).
Example:
If(n) = n , g(n) = n²
then n is O(n²) and n² is Ω (n)Â
This property only satisfies O and Ω notations.
6. Some More Properties:Â
1. If f(n) = O(g(n)) and f(n) = Ω(g(n)) then f(n) = Θ(g(n))
2. If f(n) = O(g(n)) and d(n)=O(e(n)) then f(n) + d(n) = O( max( g(n), e(n) ))Â
Example:
f(n) = n i.e O(n)Â
d(n) = n² i.e O(n²)Â
then f(n) + d(n) = n + n² i.e O(n²)
3. If f(n)=O(g(n)) and d(n)=O(e(n))Â then f(n) * d(n) = O( g(n) * e(n))
Example:Â
f(n) = n i.e O(n)Â
d(n) = n² i.e O(n²)
then f(n) * d(n) = n * n² = n³ i.e O(n³)
_______________________________________________________________________________
Note: If  f(n) = O(g(n)) then g(n) = Ω(f(n)) Â
Important Links :
For more details, please refer: Design and Analysis of Algorithms.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Basics & Prerequisites
Data Structures
Getting Started with Array Data StructureArray is a collection of items of the same variable type that are stored at contiguous memory locations. It is one of the most popular and simple data structures used in programming. Basic terminologies of ArrayArray Index: In an array, elements are identified by their indexes. Array index starts fr
14 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
3 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
3 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes.Basics of Tree Data StructureIntroduction to TreeTypes of Trees in Data StructuresApplications of tr
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
3 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem