Sort given words as Array of Strings
Last Updated :
30 Jan, 2023
Given an array of strings Arr[]. The task is to sort them in lexicographic order.
Examples:
Input: Arr[] = {"sort", "this", "list"}
Output: [list, sort, this]
Input: Arr[] = {"sun", "earth", "mars", "mercury"}
Output: [earth, mars, mercury, sun]
Selection Sort Approach: The same problem can also be solved using selection sort.
The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering ascending order) from unsorted part and putting it at the beginning
Below is the implementation of the above approach:
C++
// C++ Program to sort
// array of strings
#include <bits/stdc++.h>
using namespace std;
// Function to compare 2 words
bool isAlphabeticallySmaller(string str1, string str2)
{
transform(str1.begin(), str1.end(), str1.begin(),
::toupper);
transform(str2.begin(), str2.end(), str2.begin(),
::toupper);
if (str1 < str2) {
return true;
}
return false;
}
void selectionSort(vector<string>& arr)
{
int n = arr.size();
// One by one move boundary of
// unsorted subarray
for (int i = 0; i < n - 1; i++) {
// Find the minimum element
// in unsorted array
int min_idx = i;
for (int j = i + 1; j < n; j++)
if (isAlphabeticallySmaller(arr[j],
arr[min_idx]))
min_idx = j;
// Swap the found minimum
// element with the first element
string temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
}
// Driver code
int main()
{
vector<string> Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.size();
selectionSort(Arr);
for (int i = 0; i < N; i++) {
cout << Arr[i] << "\n";
}
// This code is contributed by rakeshsahni
return 0;
}
Java
// Java Program to sort
// array of strings
class GFG {
static void selectionSort(String[] arr)
{
int n = arr.length;
// One by one move boundary of
// unsorted subarray
for (int i = 0; i < n - 1; i++) {
// Find the minimum element
// in unsorted array
int min_idx = i;
for (int j = i + 1; j < n; j++)
if (isAlphabeticallySmaller(
arr[j], arr[min_idx]))
min_idx = j;
// Swap the found minimum
// element with the first element
String temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
}
// Function to compare 2 words
static boolean isAlphabeticallySmaller(
String str1, String str2)
{
str1 = str1.toUpperCase();
str2 = str2.toUpperCase();
if (str1.compareTo(str2) < 0) {
return true;
}
return false;
}
// Driver code
public static void main(String[] args)
{
String[] Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.length;
selectionSort(Arr);
for (int i = 0; i < N; i++) {
System.out.println(Arr[i]);
}
}
}
Python3
# Python3 code for the above approach
# function perform selection sorting on the array
def selectionSort(arr):
n = len(arr)
# One by one move boundary of
# unsorted subarray
for i in range(n - 1):
# Find the minimum element
# in unsorted array
min_idx = i
for j in range(i + 1, n):
if (isAlphabeticallySmaller(arr[j], arr[min_idx])):
min_idx = j
# Swap the found minimum
# element with the first element
temp = arr[min_idx]
arr[min_idx] = arr[i]
arr[i] = temp
return arr
# Function to compare 2 words
def isAlphabeticallySmaller(str1, str2):
str1 = str1.upper()
str2 = str2.upper()
if str1 < str2:
return True
return False
# Driver code
Arr = ["sun", "earth", "mars", "mercury"]
N = len(Arr)
# function call
Arr = selectionSort(Arr)
for word in Arr:
print(word)
# This code is contributed by phasing17
C#
// C# Program to sort
// array of strings
using System;
public class GFG
{
static void selectionSort(string[] arr)
{
int n = arr.Length;
// One by one move boundary of
// unsorted subarray
for (int i = 0; i < n - 1; i++) {
// Find the minimum element
// in unsorted array
int min_idx = i;
for (int j = i + 1; j < n; j++)
if (isAlphabeticallySmaller(
arr[j], arr[min_idx]))
min_idx = j;
// Swap the found minimum
// element with the first element
String temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
}
// Function to compare 2 words
static bool isAlphabeticallySmaller(
string str1, String str2)
{
str1 = str1.ToUpper();
str2 = str2.ToUpper();
if (str1.CompareTo(str2) < 0) {
return true;
}
return false;
}
// Driver code
static public void Main (){
string[] Arr = { "sun", "earth", "mars", "mercury" };
int N = Arr.Length;
selectionSort(Arr);
for (int i = 0; i < N; i++) {
Console.WriteLine(Arr[i]);
}
}
}
// This code is contributed by hrithikgarg03188.
JavaScript
<script>
// JavaScript code for the above approach
function selectionSort(arr)
{
let n = arr.length;
// One by one move boundary of
// unsorted subarray
for (let i = 0; i < n - 1; i++) {
// Find the minimum element
// in unsorted array
let min_idx = i;
for (let j = i + 1; j < n; j++)
if (isAlphabeticallySmaller(
arr[j], arr[min_idx]))
min_idx = j;
// Swap the found minimum
// element with the first element
let temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
}
// Function to compare 2 words
function isAlphabeticallySmaller(
str1, str2)
{
str1 = str1.toUpperCase();
str2 = str2.toUpperCase();
if (str1.localeCompare(str2) == -1) {
return true;
}
return false;
}
// Driver Code
let Arr
= [ "sun", "earth", "mars", "mercury" ];
let N = Arr.length;
selectionSort(Arr);
for (let i = 0; i < N; i++) {
document.write(Arr[i] + "<br/>");
}
// This code is contributed by sanjoy_62.
</script>
Outputearth
mars
mercury
sun
Time Complexity: O(K * N2)
Auxiliary Space: O(1)
Bubble Sort Approach: The basic approach to sort the given strings in lexicographic order is by using bubble sort.
In Bubble sort, the two successive strings Arr[i] and Arr[i+1] are exchanged whenever arr[i]> arr[i+1]. At the end of each pass, smaller values gradually “bubble” their way upward to the top and hence called bubble sort.
Below is the implementation of the above approach:
C++
// C++ Program for the above approach.
#include <bits/stdc++.h>
using namespace std;
// Function to compare 2 words
bool isAlphabeticallySmaller(
string str1, string str2)
{
transform(str1.begin(), str1.end(), str1.begin(),
::toupper);
transform(str2.begin(), str2.end(), str2.begin(),
::toupper);
if (str1 < str2) {
return true;
}
return false;
}
void bubbleSort(vector<string> &arr, int n)
{
int i, j;
string temp;
bool swapped;
for (i = 0; i < n - 1; i++) {
swapped = false;
for (j = 0; j < n - i - 1; j++) {
if (isAlphabeticallySmaller(
arr[j + 1], arr[j])) {
// Swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// If no two elements were
// swapped by inner loop,
// then break
if (swapped == false)
break;
}
}
// Driver code
int main()
{
vector<string> Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.size();
bubbleSort(Arr,N);
for (int i = 0; i < N; i++) {
cout << Arr[i] << "\n";
}
return 0;
}
// This code is contributed by Pushpesh Raj
Java
// Java code for the above approach:
public class GFG {
static void bubbleSort(String[] arr, int n)
{
int i, j;
String temp;
boolean swapped;
for (i = 0; i < n - 1; i++) {
swapped = false;
for (j = 0; j < n - i - 1; j++) {
if (isAlphabeticallySmaller(
arr[j + 1], arr[j])) {
// Swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// If no two elements were
// swapped by inner loop,
// then break
if (swapped == false)
break;
}
}
// Function to compare 2 words
static boolean isAlphabeticallySmaller(
String str1, String str2)
{
str1 = str1.toUpperCase();
str2 = str2.toUpperCase();
if (str1.compareTo(str2) < 0) {
return true;
}
return false;
}
// Driver code
public static void main(String[] args)
{
String[] Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.length;
bubbleSort(Arr, N);
for (int i = 0; i < N; i++) {
System.out.println(Arr[i]);
}
}
}
Python3
# Function to compare 2 words
def is_alphabetically_smaller(str1, str2):
str1 = str1.upper()
str2 = str2.upper()
if str1 < str2:
return True
return False
def bubble_sort(arr):
n = len(arr)
for i in range(n - 1):
swapped = False
for j in range(n - i - 1):
if is_alphabetically_smaller(arr[j + 1], arr[j]):
# Swap arr[j] and arr[j+1]
temp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = temp
swapped = True
# If no two elements were
# swapped by inner loop,
# then break
if not swapped:
break
# Test case
arr = ["sun", "earth", "mars", "mercury"]
bubble_sort(arr)
# Print the sorted list
for i in arr:
print(i)
# This code is contributed by divyansh2212
C#
// C# code for the above approach:
// Include namespace system
using System;
public class GFG {
public static void bubbleSort(String[] arr, int n)
{
int i;
int j;
String temp;
bool swapped;
for (i = 0; i < n - 1; i++) {
swapped = false;
for (j = 0; j < n - i - 1; j++) {
if (GFG.isAlphabeticallySmaller(arr[j + 1],
arr[j])) {
// Swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// If no two elements were
// swapped by inner loop,
// then break
if (swapped == false) {
break;
}
}
}
// Function to compare 2 words
public static bool isAlphabeticallySmaller(String str1,
String str2)
{
str1 = str1.ToUpper();
str2 = str2.ToUpper();
if (string.CompareOrdinal(str1, str2) < 0) {
return true;
}
return false;
}
// Driver code
public static void Main(String[] args)
{
String[] Arr
= { "sun", "earth", "mars", "mercury" };
var N = Arr.Length;
GFG.bubbleSort(Arr, N);
for (int i = 0; i < N; i++) {
Console.WriteLine(Arr[i]);
}
}
}
// This code is contributed by mukulsomukesh
JavaScript
// Javascript Program for the above approach.
// Function to compare 2 words
function isAlphabeticallySmaller(str1, str2)
{
str1.toUpperCase();
str2.toUpperCase();
if (str1 < str2) {
return true;
}
return false;
}
function bubbleSort(arr, n)
{
let i, j;
let temp="";
let swapped= false;
for (i = 0; i < n - 1; i++) {
swapped = false;
for (j = 0; j < n - i - 1; j++) {
if (isAlphabeticallySmaller(
arr[j + 1], arr[j])) {
// Swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// If no two elements were
// swapped by inner loop,
// then break
if (swapped == false)
break;
}
}
let Arr
= [ "sun", "earth", "mars", "mercury" ];
let N = Arr.length;
bubbleSort(Arr,N);
console.log(Arr);
// This code is contributed by garg28harsh.
Outputearth
mars
mercury
sun
Time Complexity: O(K * N2) where K is the length of each word.
Auxiliary Space: O(1)
Insertion Sort Approach: The problem can also be solved using Insertion sort.
In Insertion sort the array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part.
Below is the implementation of the above approach:
C++
// C++ Program for the above approach.
#include <bits/stdc++.h>
using namespace std;
// Function to compare 2 words
bool isAlphabeticallySmaller(
string str1, string str2)
{
transform(str1.begin(), str1.end(), str1.begin(),
::toupper);
transform(str2.begin(), str2.end(), str2.begin(),
::toupper);
if (str1 < str2) {
return true;
}
return false;
}
// Function to sort array
// using insertion sort
void insertionSort(vector<string> &arr)
{
int n = arr.size();
for (int i = 1; i < n; ++i) {
string key = arr[i];
int j = i - 1;
// Move elements of arr[0..i-1],
// that are greater than key,
// to one position ahead
// of their current position
while (j >= 0
&& isAlphabeticallySmaller(key, arr[j])) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
// Driver code
int main()
{
vector<string> Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.size();
insertionSort(Arr);
for (int i = 0; i < N; i++) {
cout << Arr[i] << "\n";
}
return 0;
}
// This code is contributed by Pushpesh Raj
Java
// Java program to sort array of strings
class GFG {
// Function to sort array
// using insertion sort
static void insertionSort(String[] arr)
{
int n = arr.length;
for (int i = 1; i < n; ++i) {
String key = arr[i];
int j = i - 1;
// Move elements of arr[0..i-1],
// that are greater than key,
// to one position ahead
// of their current position
while (j >= 0
&& isAlphabeticallySmaller(key, arr[j])) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
// Function to compare 2 words
static boolean isAlphabeticallySmaller(
String str1, String str2)
{
str1 = str1.toUpperCase();
str2 = str2.toUpperCase();
if (str1.compareTo(str2) < 0) {
return true;
}
return false;
}
// Driver code
public static void main(String[] args)
{
String[] Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.length;
insertionSort(Arr);
for (int i = 0; i < N; i++) {
System.out.println(Arr[i]);
}
}
}
Python3
# Python3 Program for the above approach
# Function to compare 2 words
def isAlphabeticallySmaller(str1, str2):
str1 = str1.upper()
str2 = str2.upper()
if (str1 < str2):
return True
return False
# Function to sort array
# using insertion sort
def insertionSort(arr):
n = len(arr)
for i in range(1,n):
key = arr[i]
j = i - 1
# Move elements of arr[0..i-1],
# that are greater than key,
# to one position ahead
# of their current position
while j >= 0 and isAlphabeticallySmaller(key, arr[j]):
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key
# Driver code
arr = ["sun", "earth", "mars", "mercury"]
N = len(arr)
insertionSort(arr)
print(arr)
# This code is contributed by phasing17.
C#
// Include namespace system
using System;
// C# code for the above approach:
public class GFG
{
public static void bubbleSort(String[] arr, int n)
{
int i;
int j;
String temp;
bool swapped;
for (i = 0; i < n - 1; i++)
{
swapped = false;
for (j = 0; j < n - i - 1; j++)
{
if (GFG.isAlphabeticallySmaller(arr[j + 1], arr[j]))
{
// Swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// If no two elements were
// swapped by inner loop,
// then break
if (swapped == false)
{
break;
}
}
}
// Function to compare 2 words
public static bool isAlphabeticallySmaller(String str1, String str2)
{
str1 = str1.ToUpper();
str2 = str2.ToUpper();
if (string.CompareOrdinal(str1,str2) < 0)
{
return true;
}
return false;
}
// Driver code
public static void Main(String[] args)
{
String[] Arr = {"sun", "earth", "mars", "mercury"};
var N = Arr.Length;
GFG.bubbleSort(Arr, N);
for (int i = 0; i < N; i++)
{
Console.WriteLine(Arr[i]);
}
}
}
// This code is contributed by mukulsomukesh
JavaScript
// Javascript Program for the above approach.
// Function to compare 2 words
function isAlphabeticallySmaller(str1, str2)
{
str1.toUpperCase();
str2.toUpperCase();
if (str1 < str2) {
return true;
}
return false;
}
// Function to sort array
// using insertion sort
function insertionSort(arr)
{
let n = arr.length;
for (let i = 1; i < n; ++i) {
let key = arr[i];
let j = i - 1;
// Move elements of arr[0..i-1],
// that are greater than key,
// to one position ahead
// of their current position
while (j >= 0
&& isAlphabeticallySmaller(key, arr[j])) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
// Driver code
let Arr
= [ "sun", "earth", "mars", "mercury" ];
let N = Arr.length;
insertionSort(Arr);
console.log(Arr);
// This code is contributed by garg28harsh.
Outputearth
mars
mercury
sun
Outputearth
mars
mercury
sun
Time Complexity: O(K * N2)
Auxiliary Space: O(K)
Efficient approach: The idea to solve the problem more efficiently is by using Merge Sort on the strings.
Merge Sort is a Divide and Conquer algorithm. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves.
Follow the steps below to implement this approach:
If array has more than 1 element,
- Divide the array Arr[] into two equal halves.
- Call mergeSort() for first half and then second half.
- Merge both the sorted array returned from above calls and return the merged array.
Else if array has only 1 element,
- return an array consisting of this element only.
Function to merge 2 sorted arrays of string:
- Create an array say arr3[].
- Take another pointer say 'idx' initialized to 0.
- Traverse both the arrays simultaneously using 2 pointers (lets say i and j)
- If arr1[i] is lexicographically smaller than arr2[j].
- Store arr1[i] in arr3[idx]
- Increase i and idx by 1.
- Else
- Store arr2[j] in arr3[idx]
- Increase j and idx by 1.
Below is the implementation of the above approach:
C++
// C++ program to sort
// arrays of strings using merge sort
#include <bits/stdc++.h>
using namespace std;
// Function to compare 2 words
bool isAlphabeticallySmaller(string str1, string str2)
{
transform(str1.begin(), str1.end(), str1.begin(),
::toupper);
transform(str2.begin(), str2.end(), str2.begin(),
::toupper);
if (str1 < str2) {
return true;
}
return false;
}
vector<string> merge(vector<string> Arr1,
vector<string> Arr2)
{
int m = Arr1.size();
int n = Arr2.size();
vector<string> Arr3;
int idx = 0;
int i = 0;
int j = 0;
while (i < m && j < n) {
if (isAlphabeticallySmaller(Arr1[i], Arr2[j])) {
Arr3.push_back(Arr1[i]);
i++;
idx++;
}
else {
Arr3.push_back(Arr2[j]);
j++;
idx++;
}
}
while (i < m) {
Arr3.push_back(Arr1[i]);
i++;
idx++;
}
while (j < n) {
Arr3.push_back(Arr2[j]);
j++;
idx++;
}
return Arr3;
}
// Function to mergeSort 2 arrays
vector<string> mergeSort(vector<string> Arr, int lo, int hi)
{
if (lo == hi) {
vector<string> A = { Arr[lo] };
return A;
}
int mid = lo + (hi - lo) / 2;
vector<string> arr1 = mergeSort(Arr, lo, mid);
vector<string> arr2 = mergeSort(Arr, mid + 1, hi);
vector<string> arr3 = merge(arr1, arr2);
return arr3;
}
// Driver code
int main()
{
vector<string> Arr
= { "sun", "earth", "mars", "mercury" };
int N = Arr.size();
vector<string> a = mergeSort(Arr, 0, N - 1);
for (int i = 0; i < N; i++) {
cout << a[i] << "\n";
}
return 0;
}
// This code is contributed by karandeep1234.
Java
// Java program to sort
// arrays of strings using merge sort
class GFG {
// Function to mergeSort 2 arrays
static String[] mergeSort(String[] Arr,
int lo, int hi)
{
if (lo == hi) {
String[] A = { Arr[lo] };
return A;
}
int mid = lo + (hi - lo) / 2;
String[] arr1 = mergeSort(Arr, lo, mid);
String[] arr2 = mergeSort(Arr, mid + 1, hi);
String[] arr3 = merge(arr1, arr2);
return arr3;
}
static String[] merge(
String[] Arr1, String[] Arr2)
{
int m = Arr1.length;
int n = Arr2.length;
String[] Arr3 = new String[m + n];
int idx = 0;
int i = 0;
int j = 0;
while (i < m && j < n) {
if (isAlphabeticallySmaller(
Arr1[i], Arr2[j])) {
Arr3[idx] = Arr1[i];
i++;
idx++;
}
else {
Arr3[idx] = Arr2[j];
j++;
idx++;
}
}
while (i < m) {
Arr3[idx] = Arr1[i];
i++;
idx++;
}
while (j < n) {
Arr3[idx] = Arr2[j];
j++;
idx++;
}
return Arr3;
}
// Return true if str1 appears before
// str2 in alphabetical order
static boolean isAlphabeticallySmaller(
String str1, String str2)
{
str1 = str1.toUpperCase();
str2 = str2.toUpperCase();
if (str1.compareTo(str2) < 0) {
return true;
}
return false;
}
// Driver code
public static void main(String[] args)
{
String[] Arr
= { "sun", "earth", "mars", "mercury" };
String[] a = mergeSort(Arr, 0, Arr.length - 1);
for (int i = 0; i < a.length; i++) {
System.out.println(a[i]);
}
}
}
Python3
# Python program to sort arrays of strings using merge sort
# Function to compare 2 words
def is_alphabetically_smaller(str1, str2):
str1 = str1.upper()
str2 = str2.upper()
if str1 < str2:
return True
return False
def merge(arr1, arr2):
m = len(arr1)
n = len(arr2)
arr3 = []
i = 0
j = 0
while i < m and j < n:
if is_alphabetically_smaller(arr1[i], arr2[j]):
arr3.append(arr1[i])
i += 1
else:
arr3.append(arr2[j])
j += 1
while i < m:
arr3.append(arr1[i])
i += 1
while j < n:
arr3.append(arr2[j])
j += 1
return arr3
# Function to mergeSort 2 arrays
def merge_sort(arr, lo, hi):
if lo == hi:
return [arr[lo]]
mid = lo + (hi - lo) // 2
arr1 = merge_sort(arr, lo, mid)
arr2 = merge_sort(arr, mid + 1, hi)
arr3 = merge(arr1, arr2)
return arr3
# Driver code
def main():
arr = ["sun", "earth", "mars", "mercury"]
n = len(arr)
a = merge_sort(arr, 0, n - 1)
for i in range(n):
print(a[i])
main()
# This code is contributed by divyansh2212
C#
// C# program to sort arrays of
// strings using merge sort
using System;
public class GFG {
// Function to mergeSort 2 arrays
static string[] mergeSort(string[] Arr, int lo, int hi)
{
if (lo == hi) {
string[] A = { Arr[lo] };
return A;
}
int mid = lo + (hi - lo) / 2;
string[] arr1 = mergeSort(Arr, lo, mid);
string[] arr2 = mergeSort(Arr, mid + 1, hi);
string[] arr3 = merge(arr1, arr2);
return arr3;
}
static string[] merge(string[] Arr1, string[] Arr2)
{
int m = Arr1.Length;
int n = Arr2.Length;
string[] Arr3 = new string[m + n];
int idx = 0;
int i = 0;
int j = 0;
while (i < m && j < n) {
if (isAlphabeticallySmaller(Arr1[i], Arr2[j])) {
Arr3[idx] = Arr1[i];
i++;
idx++;
}
else {
Arr3[idx] = Arr2[j];
j++;
idx++;
}
}
while (i < m) {
Arr3[idx] = Arr1[i];
i++;
idx++;
}
while (j < n) {
Arr3[idx] = Arr2[j];
j++;
idx++;
}
return Arr3;
}
// Return true if str1 appears before
// str2 in alphabetical order
static bool isAlphabeticallySmaller(string str1,
string str2)
{
str1 = str1.ToUpper();
str2 = str2.ToUpper();
if (string.Compare(str1, str2) < 0) {
return true;
}
return false;
}
static public void Main()
{
// Code
string[] Arr
= { "sun", "earth", "mars", "mercury" };
string[] a = mergeSort(Arr, 0, Arr.Length - 1);
for (int i = 0; i < a.Length; i++) {
Console.WriteLine(a[i]);
}
}
}
// This code is contributed by lokesh.
JavaScript
// Javascript program to sort
// arrays of strings using merge sort
// Function to compare 2 words
function isAlphabeticallySmaller(str1, str2)
{
str1.toUpperCase();
str2.toUpperCase();
if (str1 < str2) {
return true;
}
return false;
}
function merge( Arr1, Arr2)
{
let m = Arr1.length;
let n = Arr2.length;
let Arr3=[];
let idx = 0;
let i = 0;
let j = 0;
while (i < m && j < n) {
if (isAlphabeticallySmaller(Arr1[i], Arr2[j]) == true) {
Arr3.push(Arr1[i]);
i++;
idx++;
}
else {
Arr3.push(Arr2[j]);
j++;
idx++;
}
}
while (i < m) {
Arr3.push(Arr1[i]);
i++;
idx++;
}
while (j < n) {
Arr3.push(Arr2[j]);
j++;
idx++;
}
return Arr3;
}
// Function to mergeSort 2 arrays
function mergeSort(Arr, lo, hi)
{
// document.write(lo + " " + hi);
if (lo >= hi) {
let A = [ Arr[lo] ];
return A;
}
let mid = lo + (hi - lo) / 2;
mid = Math.round(mid-0.5);
let arr1 = mergeSort(Arr, lo, mid);
let arr2 = mergeSort(Arr, mid + 1, hi);
let arr3 = merge(arr1, arr2);
return arr3;
}
// Driver code
let Arr
= [ "sun", "earth", "mars", "mercury" ];
let N = Arr.length;
let a = mergeSort(Arr, 0, N - 1);
console.log(a);
// This code is contributed by garg28harsh.
Outputearth
mars
mercury
sun
Time Complexity: O(K * N * (log(N))
Auxiliary Space: O(N)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Non-linear Components In electrical circuits, Non-linear Components are electronic devices that need an external power source to operate actively. Non-Linear Components are those that are changed with respect to the voltage and current. Elements that do not follow ohm's law are called Non-linear Components. Non-linear Co
11 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read