Open In App

Sort an array when two halves are sorted

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an integer array arr[] whose first k elements and remaining n–k elements (for any 0 ≤ k ≤ n) are each sorted, merge these two sorted halves into a single fully sorted array.
Note : There doesn't exists more than two sorted halves in an array.

Examples: 

Input : arr[] = [2, 3, 8, -1, 7, 10]
Output : [-1, 2, 3, 7, 8, 10]
Explanation : First and last three sorted elements are [2, 3, 8] and [-1, 7, 10], after merging both halves we get a final sorted array.

Input : arr[] = [-4, 6, 9, -1, 3]
Output : [-4, -1, 3, 6, 9]
Explanation : First three and last two sorted elements are [-4, 6, 9] and [-1, 3], after merging both halves we get a final sorted array.

[Naive Approach] Sort the array

The main logic is to sort the array using built in functions (generally an implementation of quick sort). This approach ignores the “two halves” and simply calls the language’s built‑in sort to sort the entire array.

C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<int> mergeHalves(vector<int> &arr){

    // Sort the given array using sort STL
    sort(arr.begin(), arr.end());
    return arr;
}

int main(){
    vector<int> arr = {2, 3, 8, -1, 7, 10};
    int n = arr.size();
    mergeHalves(arr);
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
    return 0;
}
Java
import java.util.ArrayList;
import java.util.Arrays;

public class GFG {
    public static ArrayList<Integer> mergeHalves(int[] arr) {
        // Sort the given array using Arrays.sort
        Arrays.sort(arr);

        //Build and return an ArrayList from the sorted array
        ArrayList<Integer> result = new ArrayList<>(arr.length);
        for (int x : arr) {
            result.add(x);
        }
        return result;
    }

    public static void main(String[] args) {
        int[] arr = {2, 3, 8, -1, 7, 10};
        int n = arr.length;
        ArrayList<Integer> ans = mergeHalves(arr);
        for (int i = 0; i < n; i++) {
            System.out.print(ans.get(i) + " ");
        }
    }
}
Python
def mergeHalves(arr):
    
    # Sort the given list using list.sort()
    arr.sort()
    return arr

if __name__ == "__main__":
    arr = [2, 3, 8, -1, 7, 10]
    n = len(arr)
    mergeHalves(arr)

    for i in range(n):
        print(arr[i], end=" ")
C#
using System;
using System.Collections.Generic;

class GFG {
    
    static List<int> mergeHalves(int[] arr) {
        
        // Sort the given array using Array.Sort()
        Array.Sort(arr);

        List<int> result = new List<int>(arr.Length);
        foreach (int x in arr) {
            result.Add(x);
        }
        return result;
    }

    static void Main() {
        int[] arr = { 2, 3, 8, -1, 7, 10 };
        int n = arr.Length;
        List<int> ans = mergeHalves(arr);

        for (int i = 0; i < n; i++)
            Console.Write(ans[i] + " ");
    }
}
JavaScript
function mergeHalves(arr) {
    
    // Sort the given array using Array.prototype.sort
    arr.sort((a, b) => a - b);
    return arr;
}
    // Driver Code
    const arr = [2, 3, 8, -1, 7, 10];
    const n = arr.length;
    mergeHalves(arr);

    for (let i = 0; i < n; i++)
        process.stdout.write(arr[i] + " ");
PHP
<?php

function mergeHalves(&$arr) {
    
    // Sort the given array using sort()
    sort($arr);
    return $arr;
}

    $arr = [2, 3, 8, -1, 7, 10];
    $n = count($arr);
    mergeHalves($arr);

    for ($i = 0; $i < $n; $i++) {
        echo $arr[$i] . " ";
    }

Output
-1 2 3 7 8 10 

Time Complexity : O(n(log(n)))
Auxiliary Space : O(log(n))
Note :- For Java, Python and C# the Space Complexity will be O(n)

[Expected Approach] Using merge sort - O(n) Time and O(n) Space

The main idea behind this approachis to use an auxiliary array which is very similar to the Merge Function of Merge sort. Find where the first sorted part ends, then walk through both parts side by side, always picking the smaller next number to build the fully sorted list.

C++
#include <iostream>
#include <vector>
using namespace std;

vector<int> mergeHalves(vector<int> &arr){  
    int n = arr.size();
    
    // starting index of second half
    int index = 0; 

    // Temp Array store sorted resultant array
    vector<int> temp(n);

    // First Find the point where array is divided
    // into two half
    for (int i = 0; i < n - 1; i++) {
        if (arr[i] > arr[i + 1]) {
            index = i + 1;
            break;
        }
    }

    // If Given array is all-ready sorted
    if (index == 0)
        return arr;

    // Merge two sorted arrays in single sorted array
    int i = 0, j = index, k = 0;
    while (i < index && j < n) {
        if (arr[i] < arr[j])
            temp[k++] = arr[i++];
        else
            temp[k++] = arr[j++];
    }

    // Copy the remaining elements of arr[i to index ]
    while (i < index)
        temp[k++] = arr[i++];

    // Copy the remaining elements of arr[index to n ]
    while (j < n)
        temp[k++] = arr[j++];

    return temp;
}

int main(){
    vector<int> arr = {2, 3, 8, -1, 7, 10};
    int n = arr.size();
    vector<int> ans(n);
    ans = mergeHalves(arr);
    
    for (int i = 0; i < n; i++)
        cout << ans[i] << " ";
    return 0;
}
Java
import java.util.ArrayList;

class GFG {
    public static ArrayList<Integer> mergeHalves(int[] arr) {
        int n = arr.length;

        // starting index of second half
        int index= 0;

        // Temp Array store sorted resultant array
        ArrayList<Integer> temp = new ArrayList<>();
        for (int i = 0; i < n; i++) temp.add(0);

        // First Find the point where array is divided
        // into two half
        for (int i = 0; i < n - 1; i++) {
            if (arr[i] > arr[i + 1]) {
                index = i + 1;
                break;
            }
        }

        // If Given array is all-ready sorted
        if (index == 0) {
            
            ArrayList<Integer> original = new ArrayList<>();
            for (int x : arr) original.add(x);
            return original;
        }

        // Merge two sorted arrays in single sorted array
        int i = 0, j = index, k = 0;
        while (i < index && j < n) {
            if (arr[i] < arr[j])
                temp.set(k++, arr[i++]);
            else
                temp.set(k++, arr[j++]);
        }

        // Copy the remaining elements of arr[i to index ]
        while (i < index)
            temp.set(k++, arr[i++]);

        // Copy the remaining elements of arr[index to n ]
        while (j < n)
            temp.set(k++, arr[j++]);

        return temp;
    }

    public static void main(String[] args) {
        int[] arr = {2, 3, 8, -1, 7, 10};
        int n = arr.length;
        ArrayList<Integer> ans = mergeHalves(arr);
        for (int i = 0; i < n; i++)
            System.out.print(ans.get(i) + " ");
    }
}
Python
def mergeHalves(arr):
    n = len(arr)
    
    # starting index of second half
    index = 0

    # Temp Array store sorted resultant array
    temp = [0] * n

    # First Find the point where array is divided
    # into two half
    for i in range(n - 1):
        if arr[i] > arr[i + 1]:
            index = i + 1
            break

    # If Given array is all-ready sorted
    if index == 0:
        return arr.copy()

    # Merge two sorted arrays in single sorted array
    i, j, k = 0, index, 0
    while i < index and j < n:
        if arr[i] < arr[j]:
            temp[k] = arr[i]
            i += 1
        else:
            temp[k] = arr[j]
            j += 1
        k += 1

    # Copy the remaining elements of arr[i to index]
    while i < index:
        temp[k] = arr[i]
        i += 1
        k += 1

    # Copy the remaining elements of arr[index to n ]
    while j < n:
        temp[k] = arr[j]
        j += 1
        k += 1

    return temp

if __name__ == "__main__":
    arr = [2, 3, 8, -1, 7, 10]
    n = len(arr)

    ans = mergeHalves(arr)

    for i in range(n):
        print(ans[i], end=" ")
C#
using System;
using System.Collections.Generic;

public class GFG {
    public static List<int> mergeHalves(int[] arr) {
        int n = arr.Length;

        // starting index of second half
        int index = 0;

        // Temp Array store sorted resultant array
        List<int> temp = new List<int>(new int[n]);

        // First Find the point where array is divided
        // into two half
        for (int i = 0; i < n - 1; i++) {
            if (arr[i] > arr[i + 1]) {
                index = i + 1;
                break;
            }
        }

        // If Given array is all-ready sorted
        if (index == 0) {
            // copy original array into a List to return
            List<int> original = new List<int>();
            foreach (int x in arr) original.Add(x);
            return original;
        }

        // Merge two sorted arrays in single sorted array
        int i1 = 0, j = index, k = 0;
        while (i1 < index && j < n) {
            if (arr[i1] < arr[j])
                temp[k++] = arr[i1++];
            else
                temp[k++] = arr[j++];
        }

        // Copy the remaining elements of arr[i to index ]
        while (i1 < index)
            temp[k++] = arr[i1++];

        // Copy the remaining elements of arr[ index to n ]
        while (j < n)
            temp[k++] = arr[j++];

        return temp;
    }

    public static void Main() {
        int[] arr = {2, 3, 8, -1, 7, 10};
        int n = arr.Length;

        List<int> ans = mergeHalves(arr);

        for (int i = 0; i < n; i++)
            Console.Write(ans[i] + " ");
    }
}
JavaScript
function mergeHalves(arr) {
    let n = arr.length;

    // starting index of second half
    let index = 0;

    // Temp Array store sorted resultant array
    let temp = new Array(n).fill(0);

    // First Find the point where array is divided
    // into two half
    for (let i = 0; i < n - 1; i++) {
        if (arr[i] > arr[i + 1]) {
            index = i + 1;
            break;
        }
    }

    // If Given array is all-ready sorted
    if (index === 0)
        return arr.slice();  // return a shallow copy

    // Merge two sorted arrays in single sorted array
    let i = 0, j = index, k = 0;
    while (i < index && j < n) {
        if (arr[i] < arr[j])
            temp[k++] = arr[i++];
        else
            temp[k++] = arr[j++];
    }

    // Copy the remaining elements of arr[i to index ]
    while (i < index)
        temp[k++] = arr[i++];

    // Copy the remaining elements of arr[ index to n ]
    while (j < n)
        temp[k++] = arr[j++];

    return temp;
}
    // Driver Code
    let arr = [2, 3, 8, -1, 7, 10];
    let n = arr.length;

    let ans = mergeHalves(arr);

    for (let i = 0; i < n; i++)
        process.stdout.write(ans[i] + " ");

Output
-1 2 3 7 8 10 

 


Article Tags :
Practice Tags :

Similar Reads