Smallest subarray from a given Array with sum greater than or equal to K | Set 2
Last Updated :
25 Apr, 2023
Given an array A[] consisting of N positive integers and an integer K, the task is to find the length of the smallest subarray with a sum greater than or equal to K. If no such subarray exists, print -1.
Examples:
Input: arr[] = {3, 1, 7, 1, 2}, K = 11
Output: 3
Explanation:
The smallest subarray with sum ? K(= 11) is {3, 1, 7}.
Input: arr[] = {2, 3, 5, 4, 1}, K = 11
Output: 3
Explanation:
The minimum possible subarray is {3, 5, 4}.
Naive and Binary Search Approach: Refer to Smallest subarray from a given Array with sum greater than or equal to K for the simplest approach and the Binary Search based approaches to solve the problem.
Recursive Approach: The simplest approach to solve the problem is to use Recursion. Follow the steps below to solve the problem:
- If K ? 0: Print -1 as no such subarray can be obtained.
- If the sum of the array is equal to K, print the length of the array as the required answer.
- If the first element in the array is greater than K, then print 1 as the required answer.
- Otherwise, proceed to find the smallest subarray both by considering the current element in the subarray as well as not including it.
- Repeat the above steps for every element traversed.
Below is the implementation of the above approach:
C++14
// C++14 program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the smallest subarray
// sum greater than or equal to target
int smallSumSubset(vector<int> data,
int target, int maxVal)
{
int sum = 0;
for(int i : data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.size();
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
vector<int> temp;
for(int i = 1; i < data.size(); i++)
temp.push_back(data[i]);
return min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
}
// Driver Code
int main()
{
vector<int> data = { 3, 1, 7, 1, 2 };
int target = 11;
int val = smallSumSubset(data, target,
data.size() + 1);
if (val > data.size())
cout << -1;
else
cout << val;
}
// This code is contributed by mohit kumar 29
Java
// Java program for the above approach
import java.util.*;
import java.lang.*;
class GFG{
// Function to find the smallest subarray
// sum greater than or equal to target
static int smallSumSubset(List<Integer> data,
int target, int maxVal)
{
int sum = 0;
for(Integer i : data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.size();
// Required condition
else if (data.get(0) >= target)
return 1;
else if (data.get(0) < target)
{
List<Integer> temp = new ArrayList<>();
for(int i = 1; i < data.size(); i++)
temp.add(data.get(i));
return Math.min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data.get(0), maxVal));
}
return -1;
}
// Driver Code
public static void main (String[] args)
{
List<Integer> data = Arrays.asList(3, 1, 7, 1, 2);
int target = 11;
int val = smallSumSubset(data, target,
data.size() + 1);
if (val > data.size())
System.out.println(-1);
else
System.out.println(val);
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
# Function to find the smallest subarray
# sum greater than or equal to target
def smallSumSubset(data, target, maxVal):
# base condition
# Base Case
if target <= 0:
return 0
# If sum of the array
# is less than target
elif sum(data) < target:
return maxVal
# If target is equal to
# the sum of the array
elif sum(data) == target:
return len(data)
# Required condition
elif data[0] >= target:
return 1
elif data[0] < target:
return min(smallSumSubset(data[1:], \
target, maxVal),
1 + smallSumSubset(data[1:], \
target-data[0], maxVal))
# Driver Code
data = [3, 1, 7, 1, 2]
target = 11
val = smallSumSubset(data, target, len(data)+1)
if val > len(data):
print(-1)
else:
print(val)
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to find the smallest subarray
// sum greater than or equal to target
static int smallSumSubset(List<int> data,
int target, int maxVal)
{
int sum = 0;
foreach(int i in data)
sum += i;
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.Count;
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
List<int> temp = new List<int>();
for(int i = 1; i < data.Count; i++)
temp.Add(data[i]);
return Math.Min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
return 0;
}
// Driver code
static void Main()
{
List<int> data = new List<int>();
data.Add(3);
data.Add(1);
data.Add(7);
data.Add(1);
data.Add(2);
int target = 11;
int val = smallSumSubset(data, target,
data.Count + 1);
if (val > data.Count)
Console.Write(-1);
else
Console.Write(val);
}
}
// This code is contributed by divyeshrabadiya07
JavaScript
<script>
// js program for the above approach
// Function to find the smallest subarray
// sum greater than or equal to target
function smallSumSubset(data, target, maxVal)
{
let sum = 0;
for(let i=0;i< data.length;i++)
sum += data[i];
// Base Case
if (target <= 0)
return 0;
// If sum of the array
// is less than target
else if (sum < target)
return maxVal;
// If target is equal to
// the sum of the array
else if (sum == target)
return data.length;
// Required condition
else if (data[0] >= target)
return 1;
else if (data[0] < target)
{
let temp = [];
for(let i = 1; i < data.length; i++)
temp.push(data[i]);
return Math.min(smallSumSubset(temp, target,
maxVal),
1 + smallSumSubset(temp, target -
data[0], maxVal));
}
}
// Driver Code
let data = [ 3, 1, 7, 1, 2 ];
let target = 11;
let val = smallSumSubset(data, target,
data.length + 1);
if (val > data.length)
document.write( -1);
else
document.write(val);
</script>
Time Complexity: O(2N)
Auxiliary Space: O(N)
Efficient Approach: The above approach can be optimized using Dynamic programming by memorizing the subproblems to avoid re-computation.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to find the smallest subarray
// with sum greater than or equal target
int minlt(vector<int> arr, int target, int n)
{
// DP table to store the
// computed subproblems
vector<vector<int>> dp(arr.size() + 1 ,
vector<int> (target + 1, -1));
for(int i = 0; i < arr.size() + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = INT_MAX;
for(int i = 1; i <= arr.size(); i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
INT_MAX ?
(dp[i][j - arr[i - 1]] + 1) :
INT_MAX);
}
}
}
// Print the minimum length
if (dp[arr.size()][target] == INT_MAX)
{
return -1;
}
else
{
return dp[arr.size()][target];
}
}
// Driver code
int main()
{
vector<int> arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.size();
cout << minlt(arr, target, n);
}
// This code is contributed by Surendra_Gangwar
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find the smallest subarray
// with sum greater than or equal target
static int minlt(int[] arr, int target, int n)
{
// DP table to store the
// computed subproblems
int[][] dp = new int[arr.length + 1][target + 1];
for(int[] row : dp)
Arrays.fill(row, -1);
for(int i = 0; i < arr.length + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(int j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = Integer.MAX_VALUE;
for(int i = 1; i <= arr.length; i++)
{
for(int j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = Math.min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
Integer.MAX_VALUE ?
(dp[i][j - arr[i - 1]] + 1) :
Integer.MAX_VALUE);
}
}
}
// Print the minimum length
if (dp[arr.length][target] == Integer.MAX_VALUE)
{
return -1;
}
else
{
return dp[arr.length][target];
}
}
// Driver code
public static void main (String[] args)
{
int[] arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.length;
System.out.print(minlt(arr, target, n));
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
import sys
# Function to find the smallest subarray
# with sum greater than or equal target
def minlt(arr, target, n):
# DP table to store the
# computed subproblems
dp = [[-1 for _ in range(target + 1)]\
for _ in range(len(arr)+1)]
for i in range(len(arr)+1):
# Initialize first
# column with 0
dp[i][0] = 0
for j in range(target + 1):
# Initialize first
# row with 0
dp[0][j] = sys.maxsize
for i in range(1, len(arr)+1):
for j in range(1, target + 1):
# Check for invalid condition
if arr[i-1] > j:
dp[i][j] = dp[i-1][j]
else:
# Fill up the dp table
dp[i][j] = min(dp[i-1][j], \
1 + dp[i][j-arr[i-1]])
return dp[-1][-1]
# Print the minimum length
if dp[-1][-1] == sys.maxsize:
return(-1)
else:
return dp[-1][-1]
# Driver Code
arr = [2, 3, 5, 4, 1]
target = 11
n = len(arr)
print(minlt(arr, target, n))
C#
// C# program for the
// above approach
using System;
class GFG{
// Function to find the
// smallest subarray with
// sum greater than or equal
// target
static int minlt(int[] arr,
int target,
int n)
{
// DP table to store the
// computed subproblems
int[,] dp = new int[arr.Length + 1,
target + 1];
for(int i = 0;
i < arr.Length + 1; i++)
{
for (int j = 0;
j < target + 1; j++)
{
dp[i, j] = -1;
}
}
for(int i = 0;
i < arr.Length + 1; i++)
// Initialize first
// column with 0
dp[i, 0] = 0;
for(int j = 0;
j < target + 1; j++)
// Initialize first
// row with 0
dp[0, j] = int.MaxValue;
for(int i = 1;
i <= arr.Length; i++)
{
for(int j = 1;
j <= target; j++)
{
// Check for invalid
// condition
if (arr[i - 1] > j)
{
dp[i, j] = dp[i - 1, j];
}
else
{
// Fill up the dp table
dp[i, j] = Math.Min(dp[i - 1, j],
(dp[i, j -
arr[i - 1]]) !=
int.MaxValue ?
(dp[i, j -
arr[i - 1]] + 1) :
int.MaxValue);
}
}
}
// Print the minimum
// length
if (dp[arr.Length,
target] == int.MaxValue)
{
return -1;
}
else
{
return dp[arr.Length,
target];
}
}
// Driver code
public static void Main(String[] args)
{
int[] arr = {2, 3, 5, 4, 1};
int target = 11;
int n = arr.Length;
Console.Write(
minlt(arr, target, n));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// JavaScript program for the above approach
// Function to find the smallest subarray
// with sum greater than or equal target
function minlt(arr, target, n)
{
// DP table to store the
// computed subproblems
var dp = Array.from(Array(arr.length+1),
()=>Array(target+1).fill(-1));
for(var i = 0; i < arr.length + 1; i++)
// Initialize first
// column with 0
dp[i][0] = 0;
for(var j = 0; j < target + 1; j++)
// Initialize first
// row with 0
dp[0][j] = 1000000000;
for(var i = 1; i <= arr.length; i++)
{
for(var j = 1; j <= target; j++)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
dp[i][j] = dp[i - 1][j];
}
else
{
// Fill up the dp table
dp[i][j] = Math.min(dp[i - 1][j],
(dp[i][j - arr[i - 1]]) !=
1000000000 ?
(dp[i][j - arr[i - 1]] + 1) :
1000000000);
}
}
}
// Print the minimum length
if (dp[arr.length][target] == 1000000000)
{
return -1;
}
else
{
return dp[arr.length][target];
}
}
// Driver code
var arr = [2, 3, 5, 4, 1];
var target = 11;
var n = arr.length;
document.write( minlt(arr, target, n));
</script>
Time Complexity: O(N*Target)
Auxiliary Space: O(N*Target)
Efficient approach: Space Optimization
In the previous approach, the dp[i][j] is depend upon the previous row and current row values but it is using space of n* target 2D matrix. So to optimize the space complexity we use a 1D vector of size target + 1 just to store the previous and current computation.
Steps that were to follow the above approach:
- Create a vector 'dp' of size target+1 and initialize all values to -1.
- Initialize the first element of 'dp' to 0, since a sum of 0 can be achieved by selecting no elements.
- Loop through the array 'arr' from the second element to the last, and for each element:
- Loop through the 'dp' vector from 'target' down to 1.
- If the current element of 'arr' is greater than the current index of 'dp', continue to the next index.
- If the current index of 'dp' minus the current element of 'arr' is not equal to -1, update 'dp' with the minimum value between the current value of 'dp' at the
- current index and 'dp' at the current index minus the current element of 'arr' plus 1.
- At last return the final answer stored in dp[target].
Below is the code to implement the above steps:
C++
// C++ code above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the smallest subarray
// with sum greater than or equal target
int minlt(vector<int> arr, int target, int n)
{
// DP table to store the
// computed subproblems
vector<int> dp(target + 1, -1);
// Initialize first column with 0
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = target; j >= 1; j--) {
// Check for invalid condition
if (arr[i - 1] > j) {
continue;
}
else {
// Fill up the dp table
if (dp[j - arr[i - 1]] != -1) {
if (dp[j] == -1) {
dp[j] = dp[j - arr[i - 1]] + 1;
}
else {
dp[j] = min(dp[j],
dp[j - arr[i - 1]] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
int main()
{
vector<int> arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.size();
cout << minlt(arr, target, n);
return 0;
}
Java
import java.util.*;
public class Main {
// Function to find the smallest subarray
// with sum greater than or equal target
public static int minlt(List<Integer> arr, int target, int n) {
// DP table to store the
// computed subproblems
int[] dp = new int[target + 1];
Arrays.fill(dp, -1);
// Initialize first column with 0
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = target; j >= 1; j--) {
// Check for invalid condition
if (arr.get(i - 1) > j) {
continue;
} else {
// Fill up the dp table
if (dp[j - arr.get(i - 1)] != -1) {
if (dp[j] == -1) {
dp[j] = dp[j - arr.get(i - 1)] + 1;
} else {
dp[j] = Math.min(dp[j], dp[j - arr.get(i - 1)] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
public static void main(String[] args) {
List<Integer> arr = Arrays.asList(2, 3, 5, 4, 1);
int target = 11;
int n = arr.size();
System.out.println(minlt(arr, target, n));
}
}
Python3
def min_subarray_with_sum(arr, target_sum):
n = len(arr)
# DP table to store the computed subproblems
dp = [-1] * (target_sum + 1)
# Initialize first column with 0
dp[0] = 0
for i in range(1, n + 1):
for j in range(target_sum, 0, -1):
# Check for invalid condition
if arr[i - 1] > j:
continue
else:
# Fill up the dp table
if dp[j - arr[i - 1]] != -1:
if dp[j] == -1:
dp[j] = dp[j - arr[i - 1]] + 1
else:
dp[j] = min(dp[j], dp[j - arr[i - 1]] + 1)
# Return the minimum length
return dp[target_sum]
# Example usage:
arr = [2, 3, 5, 4, 1]
target_sum = 11
print(min_subarray_with_sum(arr, target_sum))
C#
using System;
namespace ConsoleApp1
{
class Program
{
// Function to find the smallest subarray
// with sum greater than or equal target
static int minlt(int[] arr, int target, int n)
{
// DP table to store the
// computed subproblems
int[] dp = new int[target + 1];
Array.Fill(dp, -1);
// Initialize first column with 0
dp[0] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = target; j >= 1; j--)
{
// Check for invalid condition
if (arr[i - 1] > j)
{
continue;
}
else
{
// Fill up the dp table
if (dp[j - arr[i - 1]] != -1)
{
if (dp[j] == -1)
{
dp[j] = dp[j - arr[i - 1]] + 1;
}
else
{
dp[j] = Math.Min(dp[j], dp[j - arr[i - 1]] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
static void Main(string[] args)
{
int[] arr = { 2, 3, 5, 4, 1 };
int target = 11;
int n = arr.Length;
Console.WriteLine(minlt(arr, target, n));
}
}
}
JavaScript
// Javascript code above approach
// Function to find the smallest subarray
// with sum greater than or equal target
function minlt(arr, target, n) {
// DP table to store the
// computed subproblems
let dp = new Array(target + 1).fill(-1);
// Initialize first column with 0
dp[0] = 0;
for (let i = 1; i <= n; i++) {
for (let j = target; j >= 1; j--) {
// Check for invalid condition
if (arr[i - 1] > j) {
continue;
}
else {
// Fill up the dp table
if (dp[j - arr[i - 1]] != -1) {
if (dp[j] == -1) {
dp[j] = dp[j - arr[i - 1]] + 1;
}
else {
dp[j] = Math.min(dp[j], dp[j - arr[i - 1]] + 1);
}
}
}
}
}
// Print the minimum length
return dp[target];
}
// Driver code
let arr = [ 2, 3, 5, 4, 1 ];
let target = 11;
let n = arr.length;
console.log(minlt(arr, target, n));
Output
3
Time Complexity: O(N*target)
Auxiliary Space: O(N*Target)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read