Open In App

Nth term of AP from First Two Terms

Last Updated : 03 Apr, 2025
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given two integers a1 and a2, the first and second terms of an Arithmetic Series respectively, the problem is to find the nth term of the series. 
Examples :

Input : a1 = 2, a2 = 3, n = 4
Output : 5
Explanation : The series is 2, 3, 4, 5, 6, .... , thus the 4th term is 5.

Input : a1 = 1, a2 = 3, n = 10
Output : 19
Explanation: The series is: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21..... Thus,10th term is 19.

[Naive Approach] - Using for Loop

In an Arithmetic Series, the difference between all pair of consecutive terms is same, for example, 2, 5, 8, 11, 14,,,,, The common difference is 3.

  • Find the common difference of the series, common difference d = a2 - a1
  • Run a loop to iterate over each term in the series from a1, keep adding common difference d until the n-th term is reached.
C++
#include <bits/stdc++.h>
using namespace std;

int nthTermOfAP(int a1, int a2, int n)
{
    int nthTerm = a1, d = a2 - a1;

    for (int i = 1; i < n; i++){
        nthTerm += d;
    }
    return nthTerm;
}

int main()
{
    int a1 = 2, a2 = 3;
    int n = 4;

    cout << nthTermOfAP(a1, a2, n);
    return 0;
}
C
#include <stdio.h>

int nthTermOfAP(int a1, int a2, int n)
{
    int nthTerm = a1, d = a2 - a1;
    for (int i = 1; i < n; i++)
    {
        nthTerm += d;
    }
    return nthTerm;
}

int main()
{
    int a1 = 2, a2 = 3;
    int n = 4;
    printf("%d", nthTermOfAP(a1, a2, n));
    return 0;
}
Java
public class Main {
    public static int nthTermOfAP(int a1, int a2, int n)
    {
        int nthTerm = a1, d = a2 - a1;
        for (int i = 1; i < n; i++) {
            nthTerm += d;
        }
        return nthTerm;
    }

    public static void main(String[] args)
    {
        int a1 = 2, a2 = 3;
        int n = 4;
        System.out.println(nthTermOfAP(a1, a2, n));
    }
}
Python
def nthTermOfAP(a1, a2, n):
    nthTerm = a1
    d = a2 - a1
    for i in range(1, n):
        nthTerm += d
    return nthTerm


a1 = 2
a2 = 3
n = 4
print(nthTermOfAP(a1, a2, n))
C#
using System;

class Program {
    static int nthTermOfAP(int a1, int a2, int n)
    {
        int nthTerm = a1;
        int d = a2 - a1;
        for (int i = 1; i < n; i++) {
            nthTerm += d;
        }
        return nthTerm;
    }

    static void Main()
    {
        int a1 = 2, a2 = 3;
        int n = 4;
        Console.WriteLine(nthTermOfAP(a1, a2, n));
    }
}
JavaScript
function nthTermOfAP(a1, a2, n)
{
    let nthTerm = a1;
    let d = a2 - a1;
    for (let i = 1; i < n; i++) {
        nthTerm += d;
    }
    return nthTerm;
}

let a1 = 2, a2 = 3;
let n = 4;
console.log(nthTermOfAP(a1, a2, n));

Output
5

Time Complexity - O(n)
Auxiliary Space - O(1)

[Expected Approach] - Using the Formula for nth Term

To find the nth term in the Arithmetic Progression series we use the simple formula . 

We know the Arithmetic Progression series is like = 2, 3, 4, 5, 6. …. … 
In this series 2 is the first term and 3 is the second term of the series . 
Common difference = a2 - a1 = 3 – 2 = 1 (Difference common in the series). 
so we can write the series as :
t1 = a1 
t2 = a1 + (2-1) * d 
t3 = a1 + (3-1) * d 



tN = a1 + (n-1) * d

tN = a1 + (n-1) * (a2-a1)

C++
#include <bits/stdc++.h>
using namespace std;

int nthTermOfAP(int a1, int a2, int n)
{
    // using formula to find the
    // Nth term t(n) = a(1) + (n-1)*d
    return (a1 + (n - 1) * (a2 - a1));
}

int main()
{
    int a1 = 2, a2 = 3;
    int n = 4;
    cout << nthTermOfAP(a1, a2, n);
    return 0;
}
C
#include <stdio.h>

int nthTermOfAP(int a1, int a2, int n)
{
    // using formula to find the
    // Nth term t(n) = a(1) + (n-1)*d
    return (a1 + (n - 1) * (a2 - a1));
}

int main()
{
    int a1 = 2, a2 = 3;
    int n = 4;
    printf("%d", nthTermOfAP(a1, a2, n));
    return 0;
}
Java
public class Main {
    public static int nthTermOfAP(int a1, int a2, int n)
    {
        // using formula to find the
        // Nth term t(n) = a(1) + (n-1)*d
        return (a1 + (n - 1) * (a2 - a1));
    }

    public static void main(String[] args)
    {
        int a1 = 2, a2 = 3;
        int n = 4;
        System.out.println(nthTermOfAP(a1, a2, n));
    }
}
Python
def nthTermOfAP(a1, a2, n):
    # using formula to find the
    # Nth term t(n) = a(1) + (n-1)*d
    return a1 + (n - 1) * (a2 - a1)


a1 = 2
a2 = 3
n = 4
print(nthTermOfAP(a1, a2, n))
C#
using System;

class Program {
    static int nthTermOfAP(int a1, int a2, int n)
    {
        // using formula to find the
        // Nth term t(n) = a(1) + (n-1)*d
        return (a1 + (n - 1) * (a2 - a1));
    }

    static void Main()
    {
        int a1 = 2, a2 = 3;
        int n = 4;
        Console.WriteLine(nthTermOfAP(a1, a2, n));
    }
}
JavaScript
function nthTermOfAP(a1, a2, n)
{
    // using formula to find the
    // Nth term t(n) = a(1) + (n-1)*d
    return a1 + (n - 1) * (a2 - a1);
}

let a1 = 2, a2 = 3;
let n = 4;
console.log(nthTermOfAP(a1, a2, n));

Output
5

Time Complexity - O(1)
Auxiliary Space - O(1)


Next Article

Similar Reads