Open In App

Next Permutation

Last Updated : 25 Jun, 2025
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given an array of integers arr[] representing a permutation (i.e., all elements are unique and arranged in some order), find the next lexicographically greater permutation by rearranging the elements of the array.
If such a permutation does not exist (i.e., the array is the last possible permutation), rearrange the elements to form the lowest possible order (i.e., sorted in ascending order).

Examples:

Input: arr[] = [2, 4, 1, 7, 5, 0]
Output: [2, 4, 5, 0, 1, 7]
Explanation: The next lexicographically greater arrangement of the elements in the array arr[] is [2, 4, 5, 0, 1, 7].

Input: arr[] = [3, 2, 1]
Output: [1, 2, 3]
Explanation: This is the last permutation, so we return the lowest possible permutation (ascending order).

Input: arr[] = [1, 3, 5, 4, 2]
Output: [1, 4, 2, 3, 5]
Explanation: The next lexicographically greater arrangement of the elements in the array arr[] is [1, 4, 2, 3, 5].

[Naive Approach] Generate All Permutations - O(n! * n) Time and O(n! * n) Space

The idea is that we would first generate all possible permutations of a given array and sort them. Once sorted, we locate the current permutation within this list. The next permutation is simply the next arrangement in the sorted order. If the current arrangement is the last in the list then display the first permutation (smallest permutation).

C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

void generatePermutations(vector<vector<int>> &res, 
                          vector<int> &arr, int idx) {

    // Base case: if idx reaches the end of array
    if (idx == arr.size() - 1) {
        res.push_back(arr);
        return;
    }

    // Generate all permutations by swapping
    for (int i = idx; i < arr.size(); i++) {
        swap(arr[idx], arr[i]);

        // Recur for the next index
        generatePermutations(res, arr, idx + 1);

        // Backtrack to restore original array
        swap(arr[idx], arr[i]);
    }
}

// Function to find the next permutation
void nextPermutation(vector<int>& arr) {

    vector<vector<int>> res;

    // Generate all permutations
    generatePermutations(res, arr, 0);

    // Sort all permutations lexicographically
    sort(res.begin(), res.end());

    // Find the current permutation index
    for (int i = 0; i < res.size(); i++) {

        // If current permutation matches input
        if (res[i] == arr) {

            // If it's not the last permutation
            if (i < res.size() - 1) {
                arr = res[i + 1];
            }

            // If it's the last permutation
            else {
                arr = res[0];
            }

            break;
        }
    }
}

int main() {

    vector<int> arr = {2, 4, 1, 7, 5, 0};

    nextPermutation(arr);

    for (int i = 0; i < arr.size(); i++) {
        cout << arr[i] << " ";
    }

    return 0;
}
Java
import java.util.*;

class GfG {

    // Function to generate all possible permutations
    static void generatePermutations(List<List<Integer>> res,
                                     int[] arr, int idx) {

        // Base case: if idx reaches the end of array
        if (idx == arr.length - 1) {
            List<Integer> temp = new ArrayList<>();
            for (int x : arr) temp.add(x);
            res.add(temp);
            return;
        }

        // Generate all permutations by swapping
        for (int i = idx; i < arr.length; i++) {
            swap(arr, idx, i);

            // Recur for the next index
            generatePermutations(res, arr, idx + 1);

            // Backtrack to restore original array
            swap(arr, idx, i);
        }
    }

    static void swap(int[] arr, int i, int j) {
        int t = arr[i];
        arr[i] = arr[j];
        arr[j] = t;
    }

    // Function to find the next permutation
    static void nextPermutation(int[] arr) {

        List<List<Integer>> res = new ArrayList<>();

        // Generate all permutations
        generatePermutations(res, arr, 0);

        // Sort all permutations lexicographically
        Collections.sort(res, (a, b) -> {
            for (int i = 0; i < a.size(); i++) {
                if (!a.get(i).equals(b.get(i))) {
                    return a.get(i) - b.get(i);
                }
            }
            return 0;
        });

        // Find the current permutation index
        for (int i = 0; i < res.size(); i++) {

            // If current permutation matches input
            boolean match = true;
            for (int j = 0; j < arr.length; j++) {
                if (arr[j] != res.get(i).get(j)) {
                    match = false;
                    break;
                }
            }

            if (match) {

                // If it's not the last permutation
                if (i < res.size() - 1) {
                    for (int j = 0; j < arr.length; j++) {
                        arr[j] = res.get(i + 1).get(j);
                    }
                }

                // If it's the last permutation
                else {
                    for (int j = 0; j < arr.length; j++) {
                        arr[j] = res.get(0).get(j);
                    }
                }

                break;
            }
        }
    }

    public static void main(String[] args) {

        int[] arr = {2, 4, 1, 7, 5, 0};

        nextPermutation(arr);

        for (int x : arr) {
            System.out.print(x + " ");
        }
    }
}
Python
# Function to generate all possible permutations
def generatePermutations(res, arr, idx):

    # Base case: if idx reaches the end of array
    if idx == len(arr) - 1:
        res.append(arr[:])
        return

    # Generate all permutations by swapping
    for i in range(idx, len(arr)):
        arr[idx], arr[i] = arr[i], arr[idx]

        # Recur for the next index
        generatePermutations(res, arr, idx + 1)

        # Backtrack to restore original array
        arr[idx], arr[i] = arr[i], arr[idx]

# Function to find the next permutation
def nextPermutation(arr):

    res = []

    # Generate all permutations
    generatePermutations(res, arr, 0)

    # Sort all permutations lexicographically
    res.sort()

    # Find the current permutation index
    for i in range(len(res)):

        # If current permutation matches input
        if res[i] == arr:

            # If it's not the last permutation
            if i < len(res) - 1:
                arr[:] = res[i + 1]

            # If it's the last permutation
            else:
                arr[:] = res[0]

            break

if __name__ == "__main__":

    arr = [2, 4, 1, 7, 5, 0]

    nextPermutation(arr)

    for x in arr:
        print(x, end=" ")
C#
using System;
using System.Collections.Generic;

class GfG {

    // Function to generate all possible permutations
    static void generatePermutations(List<List<int>> res,
                                     int[] arr, int idx) {

        // Base case: if idx reaches the end of array
        if (idx == arr.Length - 1) {
            res.Add(new List<int>(arr));
            return;
        }

        // Generate all permutations by swapping
        for (int i = idx; i < arr.Length; i++) {
            swap(arr, idx, i);

            // Recur for the next index
            generatePermutations(res, arr, idx + 1);

            // Backtrack to restore original array
            swap(arr, idx, i);
        }
    }

    static void swap(int[] arr, int i, int j) {
        int t = arr[i];
        arr[i] = arr[j];
        arr[j] = t;
    }

    // Function to find the next permutation
    static void nextPermutation(int[] arr) {

        List<List<int>> res = new List<List<int>>();

        // Generate all permutations
        generatePermutations(res, arr, 0);

        // Sort all permutations lexicographically
        res.Sort((a, b) => {
            for (int i = 0; i < a.Count; i++) {
                if (a[i] != b[i]) return a[i] - b[i];
            }
            return 0;
        });

        // Find the current permutation index
        for (int i = 0; i < res.Count; i++) {

            // If current permutation matches input
            bool match = true;
            for (int j = 0; j < arr.Length; j++) {
                if (arr[j] != res[i][j]) {
                    match = false;
                    break;
                }
            }

            if (match) {

                // If it's not the last permutation
                if (i < res.Count - 1) {
                    for (int j = 0; j < arr.Length; j++) {
                        arr[j] = res[i + 1][j];
                    }
                }

                // If it's the last permutation
                else {
                    for (int j = 0; j < arr.Length; j++) {
                        arr[j] = res[0][j];
                    }
                }

                break;
            }
        }
    }

    static void Main() {

        int[] arr = {2, 4, 1, 7, 5, 0};

        nextPermutation(arr);

        foreach (int x in arr) {
            Console.Write(x + " ");
        }
    }
}
JavaScript
// Function to generate all possible permutations
function generatePermutations(res, arr, idx) {

    // Base case: if idx reaches the end of array
    if (idx === arr.length - 1) {
        res.push([...arr]);
        return;
    }

    // Generate all permutations by swapping
    for (let i = idx; i < arr.length; i++) {
        [arr[idx], arr[i]] = [arr[i], arr[idx]];

        // Recur for the next index
        generatePermutations(res, arr, idx + 1);

        // Backtrack to restore original array
        [arr[idx], arr[i]] = [arr[i], arr[idx]];
    }
}

// Function to find the next permutation
function nextPermutation(arr) {

    let res = [];

    // Generate all permutations
    generatePermutations(res, arr, 0);

    // Sort all permutations lexicographically
    res.sort((a, b) => {
        for (let i = 0; i < a.length; i++) {
            if (a[i] !== b[i]) return a[i] - b[i];
        }
        return 0;
    });

    // Find the current permutation index
    for (let i = 0; i < res.length; i++) {

        // If current permutation matches input
        let match = true;
        for (let j = 0; j < arr.length; j++) {
            if (arr[j] !== res[i][j]) {
                match = false;
                break;
            }
        }

        if (match) {

            // If it's not the last permutation
            if (i < res.length - 1) {
                for (let j = 0; j < arr.length; j++) {
                    arr[j] = res[i + 1][j];
                }
            }

            // If it's the last permutation
            else {
                for (let j = 0; j < arr.length; j++) {
                    arr[j] = res[0][j];
                }
            }

            break;
        }
    }
}

// Driver Code
let arr = [2, 4, 1, 7, 5, 0];
nextPermutation(arr);
console.log(arr.join(" "));

Output
2 4 5 0 1 7 

[Expected Approach] Generating Only Next - O(n) Time and O(1) Space

Let's try some examples to see if we can recognize some patterns. 

[1, 2, 3, 4, 5]: next is [1, 2, 3, 5, 4]
Observation: 4 moves and 5 comes in place of it

[1, 2, 3, 5, 4]: next is [1, 2, 4, 3, 5]
Observation: 3 moves, 4 comes in place of it. 3 comes before 5 (mainly 3 and 5 are in sorted order)

[1, 2, 3, 6, 5, 4]: next is [1, 2, 4, 3, 5, 6]
Observation: 3 moves, 4 comes in place of it. [3, 5 and 6 are placed in sorted order]

[3, 2, 1]: next is [1, 2, 3]
Observation: All elements are reverse sorted. Result is whole array sorted.

Observations of Next permutation: 

  1. To get the next permutation we change the number in a position which is as right as possible.
  2. The first number to be moved is the rightmost number smaller than its next.
  3. The number to come in-place is the rightmost greater number on right side of the pivot.

Each permutation (except the very first) has an increasing suffix. Now if we change the pattern from the pivot point (where the increasing suffix breaks) to its next possible lexicographic representation we will get the next greater permutation.

To understand how to change the pattern from pivot, see the below image:


Step-By-Step Approach:

  • Iterate over the given array from end and find the first index (pivot) which doesn't follow property of non-increasing suffix, (i.e,  arr[i] < arr[i + 1]).
  • If pivot index does not exist, then the given sequence in the array is the largest as possible. So, reverse the complete array. For example, for [3, 2, 1], the output would be [1, 2, 3]
  • Otherwise, Iterate the array from the end and find for the successor (rightmost greater element) of pivot in suffix.
  • Swap the pivot and successor
  • Minimize the suffix part by reversing the array from pivot + 1 till n.
C++
#include <iostream> 
#include <vector> 
#include <algorithm>
using namespace std;

void nextPermutation(vector<int> &arr) {
  
    int n = arr.size(); 

     // Find the pivot index
    int pivot = -1; 
    for (int i = n - 2; i >= 0; i--) {
        if (arr[i] < arr[i + 1]) {
            pivot = i;
            break;
        }
    }

    // If pivot point does not exist, reverse the
    // whole array
    if (pivot == -1) {
        reverse(arr.begin(), arr.end());
        return;
    }

    // find the element from the right that
    // is greater than pivot
    for (int i = n - 1; i > pivot; i--) {
        if (arr[i] > arr[pivot]) {
            swap(arr[i], arr[pivot]);
            break;
        }
    }

    // Reverse the elements from pivot + 1 to the 
    // end to get the next permutation
    reverse(arr.begin() + pivot + 1, arr.end());
}

int main() {
    
    vector<int> arr = { 2, 4, 1, 7, 5, 0 };
    nextPermutation(arr);    
    for (int x : arr) 
        cout << x << " ";    
    return 0;
}
C
#include <stdio.h>
#include <stdlib.h>

void swap(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
}

void reverse(int arr[], int start, int end) {
    while (start < end) {
        swap(&arr[start], &arr[end]);
        start++;
        end--;
    }
}

void nextPermutation(int *arr, int n) {
  
    // Find the pivot index
    int pivot = -1;
    for (int i = n - 2; i >= 0; i--) {
        if (arr[i] < arr[i + 1]) {
            pivot = i;
            break;
        }
    }

    // If pivot point does not exist, 
    // reverse the whole array
    if (pivot == -1) {
        reverse(arr, 0, n - 1);
        return;
    }

    // Find the element from the right that
    // is greater than pivot
    for (int i = n - 1; i > pivot; i--) {
        if (arr[i] > arr[pivot]) {
            swap(&arr[i], &arr[pivot]);
            break;
        }
    }

    // Reverse the elements from pivot + 1 to the end
    reverse(arr, pivot + 1, n - 1);
}

int main() {
    int arr[] = { 2, 4, 1, 7, 5, 0 };
    int n = sizeof(arr) / sizeof(arr[0]);

    nextPermutation(arr, n);

    for (int i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    return 0;
}
Java
import java.util.Arrays;

class GfG {

    static void nextPermutation(int[] arr) {

        int n = arr.length;

        // Find the pivot index
        int pivot = -1;
        for (int i = n - 2; i >= 0; i--) {
            if (arr[i] < arr[i + 1]) {
                pivot = i;
                break;
            }
        }

        // If pivot point does not exist, 
        // reverse the whole array
        if (pivot == -1) {
            reverse(arr, 0, n - 1);
            return ;
        }

        // Find the element from the right 
        // that is greater than pivot
        for (int i = n - 1; i > pivot; i--) {
            if (arr[i] > arr[pivot]) {
                swap(arr, i, pivot);
                break;
            }
        }

        // Reverse the elements from pivot + 1 to the end
        reverse(arr, pivot + 1, n - 1);
    }

    // Helper method to reverse array
    private static void reverse(int[] arr, int start, int end) {
        while (start < end) {
            swap(arr, start++, end--);
        }
    }

    // Helper method to swap two elements
    private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int[] arr = { 2, 4, 1, 7, 5, 0 };
        nextPermutation(arr);
        
        for(int i = 0; i < arr.length; i++)
        System.out.print(arr[i] + " ");
    }
}
Python
def nextPermutation(arr):
    n = len(arr)
    
    # Find the pivot index
    pivot = -1
    for i in range(n - 2, -1, -1):
        if arr[i] < arr[i + 1]:
            pivot = i
            break
    
    # If pivot point does not exist, 
    # reverse the whole array
    if pivot == -1:
        arr.reverse()
        return

    # Find the element from the right 
    # that is greater than pivot
    for i in range(n - 1, pivot, -1):
        if arr[i] > arr[pivot]:
            arr[i], arr[pivot] = arr[pivot], arr[i]
            break

    # Reverse the elements from pivot + 1 to the end in place
    left, right = pivot + 1, n - 1
    while left < right:
        arr[left], arr[right] = arr[right], arr[left]
        left += 1
        right -= 1

if __name__=="__main__":
    arr = [ 2, 4, 1, 7, 5, 0 ]
    nextPermutation(arr)
    
    print(" ".join(map(str, arr)))
C#
using System;

class GfG {

    static void nextPermutation(int[] arr) {

        int n = arr.Length;

        // Find the pivot index
        int pivot = -1;
        for (int i = n - 2; i >= 0; i--) {
            if (arr[i] < arr[i + 1]) {
                pivot = i;
                break;
            }
        }

        // If pivot point does not exist, reverse the
        // whole array
        if (pivot == -1) {
            Array.Reverse(arr);
            return;
        }

        // Find the element from the right that
        // is greater than pivot
        for (int i = n - 1; i > pivot; i--) {
            if (arr[i] > arr[pivot]) {
                int temp = arr[i];
                arr[i] = arr[pivot];
                arr[pivot] = temp;
                break;
            }
        }

        // Reverse the elements from pivot + 1 to the 
        // end to get the next permutation
        Array.Reverse(arr, pivot + 1, n - pivot - 1);
    }

    static void Main() {
        
        int[] arr = { 2, 4, 1, 7, 5, 0 };
        
        nextPermutation(arr);
        
        foreach (int x in arr) {
            Console.Write(x + " ");
        }
    }
}
JavaScript
function nextPermutation(arr) {

    const n = arr.length; 

    // Find the pivot index
    let pivot = -1; 
    for (let i = n - 2; i >= 0; i--) {
        if (arr[i] < arr[i + 1]) {
            pivot = i;
            break;
        }
    }

    // If pivot point does not exist, reverse the
    // whole array
    if (pivot === -1) {
        arr.reverse();
        return;
    }

    // find the element from the right that
    // is greater than pivot
    for (let i = n - 1; i > pivot; i--) {
        if (arr[i] > arr[pivot]) {
            [arr[i], arr[pivot]] = [arr[pivot], arr[i]];
            break;
        }
    }

    // Reverse the elements from pivot + 1 to the 
    // end to get the next permutation in place
    let left = pivot + 1;
    let right = n - 1;
    while (left < right) {
        [arr[left], arr[right]] = [arr[right], arr[left]];
        left++;
        right--;
    }
}

// Driver Code
const arr = [2, 4, 1, 7, 5, 0];
nextPermutation(arr);    
console.log(arr.join(" "));

Output
2 4 5 0 1 7 

[Alternate Approach in C++] Using Inbuilt Function - O(n) Time and O(1) Space

The idea is to use C++'s built-in function next_permutation(), which directly transforms the given array into its next lexicographically greater permutation. If the current arrangement is already the largest possible, this function rearranges the array into the smallest (sorted) permutation.

C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

// Function to find the next permutation
void nextPermutation(vector<int>& arr) {

    // Rearranges elements into the next lexicographical order
    // If already last permutation, rearranges to the smallest
    next_permutation(arr.begin(), arr.end());
}

int main() {

    vector<int> arr = {2, 4, 1, 7, 5, 0};

    nextPermutation(arr);

    for (int i = 0; i < arr.size(); i++) {
        cout << arr[i] << " ";
    }

    return 0;
}

Output
2 4 5 0 1 7 

Next Article

Similar Reads