Maximum sum subarray having sum less than given sum using Set
Last Updated :
31 Jul, 2023
Given an array arr[] of length N and an integer K, the task is the find the maximum sum subarray with a sum less than K.
Note: If K is less than the minimum element, then return INT_MIN.
Examples:
Input: arr[] = {-1, 2, 2}, K = 4
Output: 3
Explanation:
The subarray with maximum sum which is less than 4 is {-1, 2, 2}.
The subarray {2, 2} has maximum sum = 4, but it is not less than 4.
Input: arr[] = {5, -2, 6, 3, -5}, K =15
Output: 12
Explanation:
The subarray with maximum sum which is less than 15 is {5, -2, 6, 3}.
Efficient Approach: Sum of subarray [i, j] is given by cumulative sum till j - cumulative sum till i of the array. Now the problem reduces to finding two indexes i and j, such that i < j and cum[j] - cum[i] are as close to K but lesser than it.
To solve this, iterate the array from left to right. Put the cumulative sum of i values that you have encountered till now into a set. When you are processing cum[j] what you need to retrieve from the set is the smallest number in the set which is bigger than or equal to cum[j] - K. This can be done in O(logN) using upper_bound on the set.
Below is the implementation of the above approach:
C++
// C++ program to find maximum sum
// subarray less than K
#include <bits/stdc++.h>
using namespace std;
// Function to maximum required sum < K
int maxSubarraySum(int arr[], int N, int K)
{
// Hash to lookup for value (cum_sum - K)
set<int> cum_set;
cum_set.insert(0);
int max_sum = INT_MIN, cSum = 0;
for (int i = 0; i < N; i++) {
// getting cumulative sum from [0 to i]
cSum += arr[i];
// lookup for upperbound
// of (cSum-K) in hash
set<int>::iterator sit
= cum_set.upper_bound(cSum - K);
// check if upper_bound
// of (cSum-K) exists
// then update max sum
if (sit != cum_set.end())
max_sum = max(max_sum, cSum - *sit);
// insert cumulative value in hash
cum_set.insert(cSum);
}
// return maximum sum
// lesser than K
return max_sum;
}
// Driver code
int main()
{
// initialise the array
int arr[] = { 5, -2, 6, 3, -5 };
// initialise the value of K
int K = 15;
// size of array
int N = sizeof(arr) / sizeof(arr[0]);
cout << maxSubarraySum(arr, N, K);
return 0;
}
Java
// Java program to find maximum sum
// subarray less than K
import java.util.*;
import java.io.*;
class GFG{
// Function to maximum required sum < K
static int maxSubarraySum(int arr[], int N,
int K)
{
// Hash to lookup for value (cum_sum - K)
Set<Integer> cum_set = new HashSet<>();
cum_set.add(0);
int max_sum =Integer.MIN_VALUE, cSum = 0;
for(int i = 0; i < N; i++)
{
// Getting cumulative sum from [0 to i]
cSum += arr[i];
// Lookup for upperbound
// of (cSum-K) in hash
ArrayList<Integer> al = new ArrayList<>();
Iterator<Integer> it = cum_set.iterator();
int end = 0;
while (it.hasNext())
{
end = it.next();
al.add(end);
}
Collections.sort(al);
int sit = lower_bound(al, cSum - K);
// Check if upper_bound
// of (cSum-K) exists
// then update max sum
if (sit != end)
max_sum = Math.max(max_sum,
cSum - sit);
// Insert cumulative value in hash
cum_set.add(cSum);
}
// Return maximum sum
// lesser than K
return max_sum;
}
static int lower_bound(ArrayList<Integer> al,
int x)
{
// x is the target value or key
int l = -1, r = al.size();
while (l + 1 < r)
{
int m = (l + r) >>> 1;
if (al.get(m) >= x)
r = m;
else
l = m;
}
return r;
}
// Driver code
public static void main(String args[])
{
// Initialise the array
int arr[] = { 5, -2, 6, 3, -5 };
// Initialise the value of K
int K = 15;
// Size of array
int N = arr.length;
System.out.println(maxSubarraySum(arr, N, K));
}
}
// This code is contributed by jyoti369
Python3
import bisect
# Function to maximum required sum < K
def maxSubarraySum(arr, N, K):
# Hash to lookup for value (cum_sum - K)
cum_set = set()
cum_set.add(0)
max_sum = float('-inf')
cSum = 0
for i in range(N):
# getting cumulative sum from [0 to i]
cSum += arr[i]
# lookup for upperbound of (cSum-K) in hash
al = [x for x in cum_set]
al.sort()
lower_bound_index = bisect.bisect_left(al, cSum - K)
# check if upper_bound of (cSum-K) exists then update max sum
if lower_bound_index != len(al):
max_sum = max(max_sum, cSum - al[lower_bound_index])
# // insert cumulative value in hash
cum_set.add(cSum)
# return maximum sum lesser than K
return max_sum
arr = [5, -2, 6, 3, -5]
K = 15
N = len(arr)
print(maxSubarraySum(arr, N, K))
C#
// Java program to find maximum sum
// subarray less than K
using System;
using System.Collections.Generic;
class GFG {
// Function to maximum required sum < K
static int maxSubarraySum(int[] arr, int N, int K)
{
// Hash to lookup for value (cum_sum - K)
HashSet<int> cum_set = new HashSet<int>();
cum_set.Add(0);
int max_sum = Int32.MinValue, cSum = 0;
for (int i = 0; i < N; i++) {
// Getting cumulative sum from [0 to i]
cSum += arr[i];
// Lookup for upperbound
// of (cSum-K) in hash
List<int> al = new List<int>();
int end = 0;
foreach(int it in cum_set)
{
end = it;
al.Add(it);
}
al.Sort();
int sit = lower_bound(al, cSum - K);
// Check if upper_bound
// of (cSum-K) exists
// then update max sum
if (sit != end)
max_sum = Math.Max(max_sum, cSum - al.ElementAt(sit));
// Insert cumulative value in hash
cum_set.Add(cSum);
}
// Return maximum sum
// lesser than K
return max_sum;
}
static int lower_bound(List<int> al, int x)
{
// x is the target value or key
int l = -1, r = al.Count;
while (l + 1 < r) {
int m = (l + r) >> 1;
if (al[m] >= x)
r = m;
else
l = m;
}
return r;
}
// Driver code
public static void Main(string[] args)
{
// Initialise the array
int[] arr = { 5, -2, 6, 3, -5 };
// Initialise the value of K
int K = 15;
// Size of array
int N = arr.Length;
Console.Write(maxSubarraySum(arr, N, K));
}
}
// This code is contributed by chitranayal.
JavaScript
<script>
// JavaScript program to find maximum sum
// subarray less than K
// Function to maximum required sum < K
function maxSubarraySum(arr, N, K)
{
// Hash to lookup for value (cum_sum - K)
let cum_set = new Set();
cum_set.add(0);
let max_sum = Number.MIN_SAFE_INTEGER;
let cSum = 0;
for(let i = 0; i < N; i++){
// Getting cumulative sum from [0 to i]
cSum += arr[i];
// Lookup for upperbound
// of (cSum-K) in hash
let al = [];
let end = 0;
for(let it of cum_set)
{
end = it;
al.push(it);
}
al.sort((a, b) => a - b);
let sit = lower_bound(al, cSum - K);
// Check if upper_bound
// of (cSum-K) exists
// then update max sum
if (sit != end)
max_sum = Math.max(max_sum, cSum - sit);
// Insert cumulative value in hash
cum_set.add(cSum);
}
// Return maximum sum
// lesser than K
return max_sum;
}
let lower_bound =
(al, x) => al.filter((item) => item > x )[0]
// Driver code
// Initialise the array
let arr = [ 5, -2, 6, 3, -5 ];
// Initialise the value of K
let K = 15;
// Size of array
let N = arr.length;
document.write(maxSubarraySum(arr, N, K));
// This code is contributed by _saurabh_jaiswal
</script>
Time Complexity: O(N*Log(N)), where N represents the size of the given array.
Auxiliary Space: O(N), where N represents the size of the given array.
Similar article: Maximum sum subarray having sum less than or equal to given sum using Sliding Window
Similar Reads
Maximum sum subarray having sum less than or equal to given sum You are given an array of non-negative integers and a target sum. Your task is to find a contiguous subarray whose sum is the maximum possible, while ensuring that it does not exceed the given target sum.Note: The given array contains only non-negative integers.Examples: Input: arr[] = [1, 2, 3, 4,
6 min read
Maximum subarray size having all subarrays sums less than k Given an array of positive integers arr[] of size n, and an integer k. The task is to find the maximum subarray size such that all subarrays of that size have sum less than or equals to k.Examples : Input : arr[] = [1, 2, 3, 4], k = 8.Output : 2Explanation: Following are the sum of subarray of size
15+ min read
Maximum sum subarray of size K with sum less than X Given an array arr[] and two integers K and X, the task is to find the maximum sum among all subarrays of size K with the sum less than X. Examples: Input: arr[] = {20, 2, 3, 10, 5}, K = 3, X = 20Output: 18Explanation: Subarray of size 3 having maximum sum less than 20 is {3, 10, 5}. Therefore, requ
7 min read
First subarray having sum at least half the maximum sum of any subarray of size K Given an array arr[] and an integer K, the task is to find the first subarray which has a sum greater than or equal to half of the maximum possible sum from any subarray of size K. Examples: Input: arr[] = {2, 4, 5, 1, 4, 6, 6, 2, 1, 0}, K = 3 Output: 6 2 1 Explanation: The given array has a maximum
9 min read
Longest subarray having maximum sum Given an array arr[] containing n integers. The problem is to find the length of the subarray having maximum sum. If there exists two or more subarrays with maximum sum then print the length of the longest subarray.Examples: Input : arr[] = {5, -2, -1, 3, -4}Output : 4There are two subarrays with ma
12 min read