Open In App

Longest subsequence such that difference between adjacents is one

Last Updated : 29 Nov, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] of size n, the task is to find the longest subsequence such that the absolute difference between adjacent elements is 1.

Examples: 

Input: arr[] = [10, 9, 4, 5, 4, 8, 6]
Output: 3
Explanation: The three possible subsequences of length 3 are [10, 9, 8], [4, 5, 4], and [4, 5, 6], where adjacent elements have a absolute difference of 1. No valid subsequence of greater length could be formed.

Input: arr[] = [1, 2, 3, 4, 5]
Output: 5
Explanation: All the elements can be included in the valid subsequence.

Using Recursion - O(2^n) Time and O(n) Space

For the recursive approach, we will consider two cases at each step:

  • If the element satisfies the condition (the absolute difference between adjacent elements is 1), we include it in the subsequence and move on to the next element.
  • else, we skip the current element and move on to the next one.

Mathematically, the recurrence relation will look like the following:

  • longestSubseq(arr, idx, prev) = max(longestSubseq(arr, idx + 1, prev), 1 + longestSubseq(arr, idx + 1, idx))

Base Case:

  • When idx == arr.size(), we have reached the end of the array, so return 0 (since no more elements can be included).
C++
// C++ program to find the longest subsequence such that
// the difference between adjacent elements is one using
// recursion.
#include <bits/stdc++.h>
using namespace std;

int subseqHelper(int idx, int prev, vector<int>& arr) {

    // Base case: if index reaches the end of the array
    if (idx == arr.size()) {
        return 0;
    }

    // Skip the current element and move to the next index
    int noTake = subseqHelper(idx + 1, prev, arr);

    // Take the current element if the condition is met
    int take = 0;
    if (prev == -1 || abs(arr[idx] - arr[prev]) == 1) {
      
        take = 1 + subseqHelper(idx + 1, idx, arr);
    }

    // Return the maximum of the two options
    return max(take, noTake);
}

// Function to find the longest subsequence
int longestSubseq(vector<int>& arr) {
  
    // Start recursion from index 0 
    // with no previous element
    return subseqHelper(0, -1, arr);
}

int main() {

    vector<int> arr = {10, 9, 4, 5, 4, 8, 6};

    cout << longestSubseq(arr);

    return 0;
}
Java
// Java program to find the longest subsequence such that
// the difference between adjacent elements is one using
// recursion.
import java.util.ArrayList;

class GfG {

    // Helper function to recursively find the subsequence
    static int subseqHelper(int idx, int prev, 
                            ArrayList<Integer> arr) {

        // Base case: if index reaches the end of the array
        if (idx == arr.size()) {
            return 0;
        }

        // Skip the current element and move to the next index
        int noTake = subseqHelper(idx + 1, prev, arr);

        // Take the current element if the condition is met
        int take = 0;
        if (prev == -1 || Math.abs(arr.get(idx) 
                 - arr.get(prev)) == 1) {
            
            take = 1 + subseqHelper(idx + 1, idx, arr);
        }

        // Return the maximum of the two options
        return Math.max(take, noTake);
    }

    // Function to find the longest subsequence
    static int longestSubseq(ArrayList<Integer> arr) {

        // Start recursion from index 0 
        // with no previous element
        return subseqHelper(0, -1, arr);
    }

    public static void main(String[] args) {

        ArrayList<Integer> arr = new ArrayList<>();
        arr.add(10);
        arr.add(9);
        arr.add(4);
        arr.add(5);
        arr.add(4);
        arr.add(8);
        arr.add(6);

        System.out.println(longestSubseq(arr));
    }
}
Python
# Python program to find the longest subsequence such that
# the difference between adjacent elements is one using
# recursion.

def subseq_helper(idx, prev, arr):
  
    # Base case: if index reaches the end of the array
    if idx == len(arr):
        return 0

    # Skip the current element and move to the next index
    no_take = subseq_helper(idx + 1, prev, arr)

    # Take the current element if the condition is met
    take = 0
    if prev == -1 or abs(arr[idx] - arr[prev]) == 1:
        take = 1 + subseq_helper(idx + 1, idx, arr)

    # Return the maximum of the two options
    return max(take, no_take)

def longest_subseq(arr):
  
    # Start recursion from index 0 
    # with no previous element
    return subseq_helper(0, -1, arr)

if __name__ == "__main__":
  
    arr = [10, 9, 4, 5, 4, 8, 6]

    print(longest_subseq(arr))
C#
// C# program to find the longest subsequence such that
// the difference between adjacent elements is one using
// recursion.
using System;
using System.Collections.Generic;

class GfG {

    // Helper function to recursively find the subsequence
    static int SubseqHelper(int idx, int prev, 
                            List<int> arr) {

        // Base case: if index reaches the end of the array
        if (idx == arr.Count) {
            return 0;
        }

        // Skip the current element and move to the next index
        int noTake = SubseqHelper(idx + 1, prev, arr);

        // Take the current element if the condition is met
        int take = 0;
        if (prev == -1 || Math.Abs(arr[idx] - arr[prev]) == 1) {
            
            take = 1 + SubseqHelper(idx + 1, idx, arr);
        }

        // Return the maximum of the two options
        return Math.Max(take, noTake);
    }

    // Function to find the longest subsequence
    static int LongestSubseq(List<int> arr) {

        // Start recursion from index 0 
        // with no previous element
        return SubseqHelper(0, -1, arr);
    }

    static void Main(string[] args) {
      
        List<int> arr 
          = new List<int> { 10, 9, 4, 5, 4, 8, 6 };

        Console.WriteLine(LongestSubseq(arr));
    }
}
JavaScript
// JavaScript program to find the longest subsequence 
// such that the difference between adjacent elements 
// is one using recursion.

function subseqHelper(idx, prev, arr) {

    // Base case: if index reaches the end of the array
    if (idx === arr.length) {
        return 0;
    }

    // Skip the current element and move to the next index
    let noTake = subseqHelper(idx + 1, prev, arr);

    // Take the current element if the condition is met
    let take = 0;
    if (prev === -1 || Math.abs(arr[idx] - arr[prev]) === 1) {
        take = 1 + subseqHelper(idx + 1, idx, arr);
    }

    // Return the maximum of the two options
    return Math.max(take, noTake);
}

function longestSubseq(arr) {

    // Start recursion from index 0 
    // with no previous element
    return subseqHelper(0, -1, arr);
}

const arr = [10, 9, 4, 5, 4, 8, 6];

console.log(longestSubseq(arr));

Output
3

Using Top-Down DP (Memoization) - O(n^2) Time and O(n^2) Space

If we notice carefully, we can observe that the above recursive solution holds the following two properties of Dynamic Programming:

1. Optimal Substructure: The solution to finding the longest subsequence such that the difference between adjacent elements is one can be derived from the optimal solutions of smaller subproblems. Specifically, for any given idx (current index) and prev (previous index in the subsequence), we can express the recursive relation as follows:

  • subseqHelper(idx, prev) = max(subseqHelper(idx + 1, prev), 1 + subseqHelper(idx + 1, idx))

2. Overlapping Subproblems: When implementing a recursive approach to solve the problem, we observe that many subproblems are computed multiple times. For example, when computing subseqHelper(0, -1) for an array arr = [10, 9, 4, 5], the subproblem subseqHelper(2, -1) may be computed multiple times. To avoid this repetition, we use memoization to store the results of previously computed subproblems.

The recursive solution involves two parameters:

  • idx (the current index in the array).
  • prev (the index of the last included element in the subsequence).

We need to track both parameters, so we create a 2D array memo of size (n) x (n+1). We initialize the 2D array memo with -1 to indicate that no subproblems have been computed yet. Before computing a result, we check if the value at memo[idx][prev+1] is -1. If it is, we compute and store the result. Otherwise, we return the stored result.

C++
// C++ program to find the longest subsequence such that
// the difference between adjacent elements is one using
// recursion with memoization.
#include <bits/stdc++.h>
using namespace std;

// Helper function to recursively find the subsequence
int subseqHelper(int idx, int prev, vector<int>& arr, 
                 vector<vector<int>>& memo) {

    // Base case: if index reaches the end of the array
    if (idx == arr.size()) {
        return 0;
    }

    // Check if the result is already computed
    if (memo[idx][prev + 1] != -1) {
        return memo[idx][prev + 1];
    }

    // Skip the current element and move to the next index
    int noTake = subseqHelper(idx + 1, prev, arr, memo);

    // Take the current element if the condition is met
    int take = 0;
    if (prev == -1 || abs(arr[idx] - arr[prev]) == 1) {
        take = 1 + subseqHelper(idx + 1, idx, arr, memo);
    }

    // Store the result in the memo table
    return memo[idx][prev + 1] = max(take, noTake);
}

// Function to find the longest subsequence
int longestSubseq(vector<int>& arr) {
  
    int n = arr.size();

    // Create a memoization table initialized to -1
    vector<vector<int>> memo(n, vector<int>(n + 1, -1));

    // Start recursion from index 0 with no previous element
    return subseqHelper(0, -1, arr, memo);
}

int main() {

    // Input array of integers
    vector<int> arr = {10, 9, 4, 5, 4, 8, 6};

    cout << longestSubseq(arr);

    return 0;
}
Java
// Java program to find the longest subsequence such that
// the difference between adjacent elements is one using
// recursion with memoization.
import java.util.ArrayList;
import java.util.Arrays;

class GfG {

    // Helper function to recursively find the subsequence
    static int subseqHelper(int idx, int prev, 
                            ArrayList<Integer> arr, 
                            int[][] memo) {

        // Base case: if index reaches the end of the array
        if (idx == arr.size()) {
            return 0;
        }

        // Check if the result is already computed
        if (memo[idx][prev + 1] != -1) {
            return memo[idx][prev + 1];
        }

        // Skip the current element and move to the next index
        int noTake = subseqHelper(idx + 1, prev, arr, memo);

        // Take the current element if the condition is met
        int take = 0;
        if (prev == -1 || Math.abs(arr.get(idx) 
                 - arr.get(prev)) == 1) {

            take = 1 + subseqHelper(idx + 1, idx, arr, memo);
        }

        // Store the result in the memo table
        memo[idx][prev + 1] = Math.max(take, noTake);

        // Return the stored result
        return memo[idx][prev + 1];
    }

    // Function to find the longest subsequence
    static int longestSubseq(ArrayList<Integer> arr) {
        int n = arr.size();

        // Create a memoization table initialized to -1
        int[][] memo = new int[n][n + 1];
        for (int[] row : memo) {
            Arrays.fill(row, -1);
        }

        // Start recursion from index 0 
        // with no previous element
        return subseqHelper(0, -1, arr, memo);
    }

    public static void main(String[] args) {

        ArrayList<Integer> arr = new ArrayList<>();
        arr.add(10);
        arr.add(9);
        arr.add(4);
        arr.add(5);
        arr.add(4);
        arr.add(8);
        arr.add(6);

        System.out.println(longestSubseq(arr));
    }
}
Python
# Python program to find the longest subsequence such that
# the difference between adjacent elements is one using
# recursion with memoization.

def subseq_helper(idx, prev, arr, memo):
  
    # Base case: if index reaches the end of the array
    if idx == len(arr):
        return 0

    # Check if the result is already computed
    if memo[idx][prev + 1] != -1:
        return memo[idx][prev + 1]

    # Skip the current element and move to the next index
    no_take = subseq_helper(idx + 1, prev, arr, memo)

    # Take the current element if the condition is met
    take = 0
    if prev == -1 or abs(arr[idx] - arr[prev]) == 1:
        take = 1 + subseq_helper(idx + 1, idx, arr, memo)

    # Store the result in the memo table
    memo[idx][prev + 1] = max(take, no_take)

    # Return the stored result
    return memo[idx][prev + 1]

def longest_subseq(arr):
    n = len(arr)
    
    # Create a memoization table initialized to -1
    memo = [[-1 for _ in range(n + 1)] for _ in range(n)]
    
    # Start recursion from index 0 with 
    # no previous element
    return subseq_helper(0, -1, arr, memo)

if __name__ == "__main__":
    
    arr = [10, 9, 4, 5, 4, 8, 6]

    print(longest_subseq(arr))
C#
// C# program to find the longest subsequence such that
// the difference between adjacent elements is one using
// recursion with memoization.
using System;
using System.Collections.Generic;

class GfG {

    // Helper function to recursively find the subsequence
    static int SubseqHelper(int idx, int prev,
                            List<int> arr, int[,] memo) {

        // Base case: if index reaches the end of the array
        if (idx == arr.Count) {
            return 0;
        }

        // Check if the result is already computed
        if (memo[idx, prev + 1] != -1) {
            return memo[idx, prev + 1];
        }

        // Skip the current element and move to the next index
        int noTake = SubseqHelper(idx + 1, prev, arr, memo);

        // Take the current element if the condition is met
        int take = 0;
        if (prev == -1 || Math.Abs(arr[idx] - arr[prev]) == 1) {
            take = 1 + SubseqHelper(idx + 1, idx, arr, memo);
        }

        // Store the result in the memoization table
        memo[idx, prev + 1] = Math.Max(take, noTake);

        // Return the stored result
        return memo[idx, prev + 1];
    }

    // Function to find the longest subsequence
    static int LongestSubseq(List<int> arr) {
        
        int n = arr.Count;
        
        // Create a memoization table initialized to -1
        int[,] memo = new int[n, n + 1];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j <= n; j++) {
                memo[i, j] = -1;
            }
        }

        // Start recursion from index 0 with no previous element
        return SubseqHelper(0, -1, arr, memo);
    }

    static void Main(string[] args) {

        List<int> arr 
          = new List<int> { 10, 9, 4, 5, 4, 8, 6 };

        Console.WriteLine(LongestSubseq(arr));
    }
}
JavaScript
// JavaScript program to find the longest subsequence 
// such that the difference between adjacent elements 
// is one using recursion with memoization.

function subseqHelper(idx, prev, arr, memo) {

    // Base case: if index reaches the end of the array
    if (idx === arr.length) {
        return 0;
    }

    // Check if the result is already computed
    if (memo[idx][prev + 1] !== -1) {
        return memo[idx][prev + 1];
    }

    // Skip the current element and move to the next index
    let noTake = subseqHelper(idx + 1, prev, arr, memo);

    // Take the current element if the condition is met
    let take = 0;
    if (prev === -1 || Math.abs(arr[idx] - arr[prev]) === 1) {
        take = 1 + subseqHelper(idx + 1, idx, arr, memo);
    }

    // Store the result in the memoization table
    memo[idx][prev + 1] = Math.max(take, noTake);

    // Return the stored result
    return memo[idx][prev + 1];
}

function longestSubseq(arr) {

    let n = arr.length;
    
    // Create a memoization table initialized to -1
    let memo =
      Array.from({ length: n }, () => Array(n + 1).fill(-1));

    // Start recursion from index 0 with no previous element
    return subseqHelper(0, -1, arr, memo);
}

const arr = [10, 9, 4, 5, 4, 8, 6];

console.log(longestSubseq(arr));

Output
3

Using Bottom-Up DP (Tabulation) - O(n) Time and O(n) Space

The approach is similar to the recursive method, but instead of breaking down the problem recursively, we iteratively build the solution in a bottom-up manner.
Instead of using recursion, we utilize a hashmap based dynamic programming table (dp) to store the lengths of the longest subsequences. This helps us efficiently calculate and update the subsequence lengths for all possible values of array elements.

Dynamic Programming Relation:

dp[x] represents the length of the longest subsequence ending with the element x.

For every element arr[i] in the array: If arr[i] + 1 or arr[i] - 1 exists in dp:

  • dp[arr[i]] = 1 + max(dp[arr[i] + 1], dp[arr[i] - 1]);

This means we can extend the subsequences ending with arr[i] + 1 or arr[i] - 1 by including arr[i].

Otherwise, start a new subsequence:

  • dp[arr[i]] = 1;
C++
// C++ program to find the longest subsequence such that
// the difference between adjacent elements is one using
// Tabulation.
#include <bits/stdc++.h>
using namespace std;

int longestSubseq(vector<int>& arr) {
  
    int n = arr.size();

    // Base case: if the array has only 
  	// one element
    if (n == 1) {
        return 1;
    }

    // Map to store the length of the longest subsequence
    unordered_map<int, int> dp;
    int ans = 1;

    // Loop through the array to fill the map
    // with subsequence lengths
    for (int i = 0; i < n; ++i) {
      
        // Check if the current element is adjacent
        // to another subsequence
        if (dp.count(arr[i] + 1) > 0 
                       || dp.count(arr[i] - 1) > 0) {
          
            dp[arr[i]] = 1 + 
                  max(dp[arr[i] + 1], dp[arr[i] - 1]);
        } 
        else {
            dp[arr[i]] = 1;  
        }
        
        // Update the result with the maximum
        // subsequence length
        ans = max(ans, dp[arr[i]]);
    }

    return ans;
}

int main() {
  
    vector<int> arr = {10, 9, 4, 5, 4, 8, 6};

    cout << longestSubseq(arr);

    return 0;
}
Java
// Java code to find the longest subsequence such that
// the difference between adjacent elements 
// is one using Tabulation.
import java.util.HashMap;
import java.util.ArrayList;

class GfG {

    static int longestSubseq(ArrayList<Integer> arr) {

        int n = arr.size();

        // Base case: if the array has only one element
        if (n == 1) {
            return 1;
        }

        // Map to store the length of the longest subsequence
        HashMap<Integer, Integer> dp = new HashMap<>();
        int ans = 1;

        // Loop through the array to fill the map 
        // with subsequence lengths
        for (int i = 0; i < n; ++i) {

            // Check if the current element is adjacent 
            // to another subsequence
            if (dp.containsKey(arr.get(i) + 1) 
                       || dp.containsKey(arr.get(i) - 1)) {

                dp.put(arr.get(i), 1 + 
                       Math.max(dp.getOrDefault(arr.get(i) + 1, 0), 
                               dp.getOrDefault(arr.get(i) - 1, 0)));
            } 
            else {
                dp.put(arr.get(i), 1);  
            }

            // Update the result with the maximum 
            // subsequence length
            ans = Math.max(ans, dp.get(arr.get(i)));
        }

        return ans;
    }

    public static void main(String[] args) {

        ArrayList<Integer> arr = new ArrayList<>();
        arr.add(10);
        arr.add(9);
        arr.add(4);
        arr.add(5);
        arr.add(4);
        arr.add(8);
        arr.add(6);
      
        System.out.println(longestSubseq(arr));
    }
}
Python
# Python code to find the longest subsequence such that
# the difference between adjacent elements is 
# one using Tabulation.
def longestSubseq(arr):

    n = len(arr)

    # Base case: if the array has only one element
    if n == 1:
        return 1

    # Dictionary to store the length of the 
    # longest subsequence
    dp = {}
    ans = 1

    for i in range(n):

        # Check if the current element is adjacent to 
        # another subsequence
        if arr[i] + 1 in dp or arr[i] - 1 in dp:
            dp[arr[i]] = 1 + max(dp.get(arr[i] + 1, 0), \
                                 dp.get(arr[i] - 1, 0))
        else:
            dp[arr[i]] = 1

        # Update the result with the maximum
        # subsequence length
        ans = max(ans, dp[arr[i]])

    return ans

if __name__ == "__main__":

    arr = [10, 9, 4, 5, 4, 8, 6]

    print(longestSubseq(arr))
C#
// C# code to find the longest subsequence such that
// the difference between adjacent elements 
// is one using Tabulation.
using System;
using System.Collections.Generic;

class GfG {

    static int longestSubseq(List<int> arr) {

        int n = arr.Count;

        // Base case: if the array has only one element
        if (n == 1) {
            return 1;
        }

        // Map to store the length of the longest subsequence
        Dictionary<int, int> dp = new Dictionary<int, int>();
        int ans = 1;

        // Loop through the array to fill the map with 
        // subsequence lengths
        for (int i = 0; i < n; ++i) {

            // Check if the current element is adjacent to
            // another subsequence
            if (dp.ContainsKey(arr[i] + 1) || dp.ContainsKey(arr[i] - 1)) {

                dp[arr[i]] = 1 + Math.Max(dp.GetValueOrDefault(arr[i] + 1, 0),
                                          dp.GetValueOrDefault(arr[i] - 1, 0));
            } 
            else {
                dp[arr[i]] = 1;  
            }

            // Update the result with the maximum 
            // subsequence length
            ans = Math.Max(ans, dp[arr[i]]);
        }

        return ans;
    }

    static void Main(string[] args) {

        List<int> arr 
          = new List<int> { 10, 9, 4, 5, 4, 8, 6 };

        Console.WriteLine(longestSubseq(arr));
    }
}
JavaScript
// Function to find the longest subsequence such that
// the difference between adjacent elements
// is one using Tabulation.

function longestSubseq(arr) {

    const n = arr.length;

    // Base case: if the array has only one element
    if (n === 1) {
        return 1;
    }

    // Object to store the length of the
    // longest subsequence
    let dp = {};
    let ans = 1;

    // Loop through the array to fill the object
    // with subsequence lengths
    for (let i = 0; i < n; i++) {

        // Check if the current element is adjacent to 
        // another subsequence
        if ((arr[i] + 1) in dp || (arr[i] - 1) in dp) {
            dp[arr[i]] = 1 + Math.max(dp[arr[i] + 1]
                                   || 0, dp[arr[i] - 1] || 0);
        } else {
            dp[arr[i]] = 1;
        }

        // Update the result with the maximum 
        // subsequence length
        ans = Math.max(ans, dp[arr[i]]);
    }

    return ans;
}

const arr = [10, 9, 4, 5, 4, 8, 6];

console.log(longestSubseq(arr));

Output
3

Next Article
Article Tags :
Practice Tags :

Similar Reads