Find maximum level sum in Binary Tree
Last Updated :
11 Sep, 2023
Given a Binary Tree having positive and negative nodes, the task is to find the maximum sum level in it.
Examples:
Input : 4
/ \
2 -5
/ \ /\
-1 3 -2 6
Output: 6
Explanation :
Sum of all nodes of 0'th level is 4
Sum of all nodes of 1'th level is -3
Sum of all nodes of 0'th level is 6
Hence maximum sum is 6
Input : 1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
Output : 17
This problem is a variation of the maximum width problem. The idea is to do a level order traversal of the tree. While doing traversal, process nodes of different levels separately. For every level being processed, compute the sum of nodes in the level and keep track of the maximum sum.
Below is the implementation of the above idea:
C++
// A queue based C++ program to find maximum sum
// of a level in Binary Tree
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node
{
int data;
struct Node *left, *right;
};
// Function to find the maximum sum of a level in tree
// using level order traversal
int maxLevelSum(struct Node* root)
{
// Base case
if (root == NULL)
return 0;
// Initialize result
int result = root->data;
// Do Level order traversal keeping track of number
// of nodes at every level.
queue<Node*> q;
q.push(root);
while (!q.empty())
{
// Get the size of queue when the level order
// traversal for one level finishes
int count = q.size();
// Iterate for all the nodes in the queue currently
int sum = 0;
while (count--)
{
// Dequeue an node from queue
Node* temp = q.front();
q.pop();
// Add this node's value to current sum.
sum = sum + temp->data;
// Enqueue left and right children of
// dequeued node
if (temp->left != NULL)
q.push(temp->left);
if (temp->right != NULL)
q.push(temp->right);
}
// Update the maximum node count value
result = max(sum, result);
}
return result;
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Driver code
int main()
{
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(8);
root->right->right->left = newNode(6);
root->right->right->right = newNode(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
cout << "Maximum level sum is " << maxLevelSum(root)
<< endl;
return 0;
}
Java
// A queue based Java program to find maximum
// sum of a level in Binary Tree
import java.util.LinkedList;
import java.util.Queue;
class GFG{
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
static class Node
{
int data;
Node left, right;
public Node(int data)
{
this.data = data;
this.left = this.right = null;
}
};
// Function to find the maximum
// sum of a level in tree
// using level order traversal
static int maxLevelSum(Node root)
{
// Base case
if (root == null)
return 0;
// Initialize result
int result = root.data;
// Do Level order traversal keeping
// track of number of nodes at every
// level.
Queue<Node> q = new LinkedList<>();
q.add(root);
while (!q.isEmpty())
{
// Get the size of queue when the
// level order traversal for one
// level finishes
int count = q.size();
// Iterate for all the nodes
// in the queue currently
int sum = 0;
while (count-- > 0)
{
// Dequeue an node from queue
Node temp = q.poll();
// Add this node's value
// to current sum.
sum = sum + temp.data;
// Enqueue left and right children
// of dequeued node
if (temp.left != null)
q.add(temp.left);
if (temp.right != null)
q.add(temp.right);
}
// Update the maximum node
// count value
result = Math.max(sum, result);
}
return result;
}
// Driver code
public static void main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
System.out.println("Maximum level sum is " +
maxLevelSum(root));
}
}
// This code is contributed by sanjeev2552
Python3
# A queue based Python3 program to find
# maximum sum of a level in Binary Tree
from collections import deque
# A binary tree node has data, pointer
# to left child and a pointer to right
# child
class Node:
def __init__(self, key):
self.data = key
self.left = None
self.right = None
# Function to find the maximum sum
# of a level in tree
# using level order traversal
def maxLevelSum(root):
# Base case
if (root == None):
return 0
# Initialize result
result = root.data
# Do Level order traversal keeping
# track of number
# of nodes at every level.
q = deque()
q.append(root)
while (len(q) > 0):
# Get the size of queue when the
# level order traversal for one
# level finishes
count = len(q)
# Iterate for all the nodes in
# the queue currently
sum = 0
while (count > 0):
# Dequeue an node from queue
temp = q.popleft()
# Add this node's value to current sum.
sum = sum + temp.data
# Enqueue left and right children of
# dequeued node
if (temp.left != None):
q.append(temp.left)
if (temp.right != None):
q.append(temp.right)
count -= 1
# Update the maximum node count value
result = max(sum, result)
return result
# Driver code
if __name__ == '__main__':
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(8)
root.right.right.left = Node(6)
root.right.right.right = Node(7)
# Constructed Binary tree is:
# 1
# / \
# 2 3
# / \ \
# 4 5 8
# / \
# 6 7
print("Maximum level sum is", maxLevelSum(root))
# This code is contributed by mohit kumar 29
C#
// A queue based C# program to find maximum
// sum of a level in Binary Tree
using System;
using System.Collections.Generic;
class GFG
{
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
public
class Node
{
public
int data;
public
Node left, right;
public Node(int data)
{
this.data = data;
this.left = this.right = null;
}
};
// Function to find the maximum
// sum of a level in tree
// using level order traversal
static int maxLevelSum(Node root)
{
// Base case
if (root == null)
return 0;
// Initialize result
int result = root.data;
// Do Level order traversal keeping
// track of number of nodes at every
// level.
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count != 0)
{
// Get the size of queue when the
// level order traversal for one
// level finishes
int count = q.Count;
// Iterate for all the nodes
// in the queue currently
int sum = 0;
while (count --> 0)
{
// Dequeue an node from queue
Node temp = q.Dequeue();
// Add this node's value
// to current sum.
sum = sum + temp.data;
// Enqueue left and right children
// of dequeued node
if (temp.left != null)
q.Enqueue(temp.left);
if (temp.right != null)
q.Enqueue(temp.right);
}
// Update the maximum node
// count value
result = Math.Max(sum, result);
}
return result;
}
// Driver code
public static void Main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
Console.WriteLine("Maximum level sum is " +
maxLevelSum(root));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// A queue based Javascript program to find maximum
// sum of a level in Binary Tree
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
class Node
{
constructor(data)
{
this.data = data;
this.left = this.right = null;
}
}
// Function to find the maximum
// sum of a level in tree
// using level order traversal
function maxLevelSum(root)
{
// Base case
if (root == null)
return 0;
// Initialize result
let result = root.data;
// Do Level order traversal keeping
// track of number of nodes at every
// level.
let q = [];
q.push(root);
while (q.length!=0)
{
// Get the size of queue when the
// level order traversal for one
// level finishes
let count = q.length;
// Iterate for all the nodes
// in the queue currently
let sum = 0;
while (count-- > 0)
{
// Dequeue an node from queue
let temp = q.shift();
// Add this node's value
// to current sum.
sum = sum + temp.data;
// Enqueue left and right children
// of dequeued node
if (temp.left != null)
q.push(temp.left);
if (temp.right != null)
q.push(temp.right);
}
// Update the maximum node
// count value
result = Math.max(sum, result);
}
return result;
}
// Driver code
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
document.write("Maximum level sum is " +
maxLevelSum(root));
// This code is contributed by unknown2108
</script>
OutputMaximum level sum is 17
Complexity Analysis:
Time Complexity: O(N) where N is the total number of nodes in the tree.
In level order traversal, every node of the tree is processed once, and hence the complexity due to the level order traversal is O(N) if there are total N nodes in the tree. Also, while processing every node, we are maintaining the sum at each level, however, this does not affect the overall time complexity. Therefore, the time complexity is O(N).
Auxiliary Space: O(w) where w is the maximum width of the tree.
In level order traversal, a queue is maintained whose maximum size at any moment can go up to the maximum width of the binary tree.
Using Recursion Without Queue:-
- We will use recursion and do any dfs of the tree.
- As in dfs we will move downwards of the tree so while moving we will take care of the level of the tree
- We will add the node value to the current level of the tree
- In the end we will return the maximum sum from all level
Implementation:-
- We will start traversal by level 0 that is from root
- From root we will move downwards using recursion and while moving we will increase the level of the tree by +1.
- We will take a unordered_map to store the sum of the current level
- In the end we will return the maximum value from the map.
C++
// A queue based C++ program to find maximum sum
// of a level in Binary Tree
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node
{
int data;
struct Node *left, *right;
};
//function to get sum or each level
void dfs(Node* root,int level,unordered_map<int,int> &mm)
{
//base condition
if(!root)return;
//adding root value to its level sum
mm[level]+=root->data;
//increasing level
level++;
//moving left
dfs(root->left,level,mm);
//moving right
dfs(root->right,level,mm);
}
// Function to find the maximum sum of a level in tree
// using level order traversal
int maxLevelSum(struct Node* root)
{
// Base case
if (root == NULL)
return 0;
//map to store sum of each level
unordered_map<int,int> mm;
//calling function
dfs(root,0,mm);
//variable to store answer
int result = INT_MIN;
//iterating over map
for(auto x:mm)result = max(x.second,result);
return result;
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Driver code
int main()
{
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(8);
root->right->right->left = newNode(6);
root->right->right->right = newNode(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
cout << "Maximum level sum is " << maxLevelSum(root)
<< endl;
return 0;
}
//code contributed by shubhamrajput6156
Java
import java.util.*;
// A binary tree node has data, a pointer to the left child,
// and a pointer to the right child
class Node {
int data;
Node left, right;
// Constructor to create a new node
Node(int data) {
this.data = data;
left = right = null;
}
}
class GFG {
// Function to get the sum for each level
static void dfs(Node root, int level, Map<Integer, Integer> mm) {
// Base condition
if (root == null) return;
// Adding the root value to its level sum
mm.put(level, mm.getOrDefault(level, 0) + root.data);
// Increasing level
level++;
// Moving left
dfs(root.left, level, mm);
// Moving right
dfs(root.right, level, mm);
}
// Function to find the maximum sum of a level in
// the tree using level order traversal
static int maxLevelSum(Node root) {
// Base case
if (root == null) return 0;
// Map to store the sum of each level
Map<Integer, Integer> mm = new HashMap<>();
// Calling the dfs function
dfs(root, 0, mm);
// Variable to store the answer
int result = Integer.MIN_VALUE;
// Iterating over the map
for (Map.Entry<Integer, Integer> entry : mm.entrySet()) {
result = Math.max(entry.getValue(), result);
}
return result;
}
// Driver code
public static void main(String[] args) {
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
// Constructed binary tree is:
// 1
// / \
// 2 3
// / \ \
// 4 5 8
// / \
// 6 7
System.out.println("Maximum level sum is " + maxLevelSum(root));
}
}
Python3
# A binary tree node has data, left and right pointers
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to get sum of each level
def dfs(root, level, mm):
# Base condition
if not root:
return
# Adding root value to its level sum
mm[level] = mm.get(level, 0) + root.data
# Increasing level
level += 1
# Moving left
dfs(root.left, level, mm)
# Moving right
dfs(root.right, level, mm)
# Function to find the maximum sum of a level in the tree
def maxLevelSum(root):
# Base case
if not root:
return 0
# Map to store the sum of each level
mm = {}
# Calling the function to calculate the sum of each level
dfs(root, 0, mm)
# Variable to store the answer
result = float('-inf')
# Iterating over the map to find the maximum sum
for val in mm.values():
result = max(result, val)
return result
# Helper function to allocate a new node with the given data and NULL left and right pointers
def newNode(data):
node = Node(data)
return node
# Driver code
if __name__ == "__main__":
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.right = newNode(8)
root.right.right.left = newNode(6)
root.right.right.right = newNode(7)
"""
Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
"""
print("Maximum level sum is", maxLevelSum(root))
C#
using System;
using System.Collections.Generic;
class Node
{
public int data;
public Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class MainClass
{
// Function to get sum of each level
static void DFS(Node root, int level, Dictionary<int, int> mm)
{
// Base condition
if (root == null)
return;
// Adding root value to its level sum
if (mm.ContainsKey(level))
mm[level] += root.data;
else
mm[level] = root.data;
// Increasing level
level++;
// Moving left
DFS(root.left, level, mm);
// Moving right
DFS(root.right, level, mm);
}
// Function to find the maximum sum of a level in the tree
static int MaxLevelSum(Node root)
{
// Base case
if (root == null)
return 0;
// Dictionary to store the sum of each level
Dictionary<int, int> mm = new Dictionary<int, int>();
// Calling the function to calculate the sum of each level
DFS(root, 0, mm);
// Variable to store the answer
int result = int.MinValue;
// Iterating over the dictionary to find the maximum sum
foreach (var val in mm.Values)
{
result = Math.Max(result, val);
}
return result;
}
// Helper function to allocate a new node with the given data and NULL left and right pointers
static Node NewNode(int data)
{
Node node = new Node(data);
return node;
}
// Driver code
public static void Main(string[] args)
{
Node root = NewNode(1);
root.left = NewNode(2);
root.right = NewNode(3);
root.left.left = NewNode(4);
root.left.right = NewNode(5);
root.right.right = NewNode(8);
root.right.right.left = NewNode(6);
root.right.right.right = NewNode(7);
/* Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7 */
Console.WriteLine("Maximum level sum is " + MaxLevelSum(root));
}
}
JavaScript
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Function to get sum of each level
function dfs(root, level, mm) {
// Base condition
if (!root) {
return;
}
// Adding root value to its level sum
mm[level] = (mm[level] || 0) + root.data;
// Increasing level
level++;
// Moving left
dfs(root.left, level, mm);
// Moving right
dfs(root.right, level, mm);
}
// Function to find the maximum sum of a level in the tree
function maxLevelSum(root) {
// Base case
if (!root) {
return 0;
}
// Object to store the sum of each level
const mm = {};
// Calling the function to calculate the sum of each level
dfs(root, 0, mm);
// Variable to store the answer
let result = Number.MIN_SAFE_INTEGER;
// Iterating over the object to find the maximum sum
for (let val of Object.values(mm)) {
result = Math.max(result, val);
}
return result;
}
// Helper function to allocate a new node with the given data
// and NULL left and right pointers
function newNode(data) {
return new Node(data);
}
// Driver code
const root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.right = newNode(8);
root.right.right.left = newNode(6);
root.right.right.right = newNode(7);
/*
Constructed Binary tree is:
1
/ \
2 3
/ \ \
4 5 8
/ \
6 7
*/
console.log("Maximum level sum is", maxLevelSum(root));
Output:- Maximum level sum is 17
Time Complexity:- O(N)
Space Complexity:- O(H) where H is height of tree
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read