Find Length of a Linked List (Iterative and Recursive)
Last Updated :
18 Feb, 2025
Given a Singly Linked List, the task is to find the Length of the Linked List.
Examples:
Input: LinkedList = 1->3->1->2->1
Output: 5
Explanation: The linked list has 5 nodes.
Input: LinkedList = 2->4->1->9->5->3->6
Output: 7
Explanation: The linked list has 7 nodes.
Input: LinkedList = 10->20->30->40->50->60
Output: 6
Explanation: The linked list has 6 nodes.
Iterative Approach to Find the Length of a Linked List
The idea is similar to traversal of Linked List with an additional variable to count the number of nodes in the Linked List.
Steps to find the length of the Linked List:
- Initialize count as 0.
- Initialize a node pointer, curr = head.
- Do following while curr is not NULL
- curr = curr -> next
- Increment count by 1.
- Return count.
C++
// Iterative C++ program to find length
// or count of nodes in a linked list
#include <bits/stdc++.h>
using namespace std;
// Link list node
class Node {
public:
int data;
Node* next;
// Constructor to initialize a new node with data
Node(int new_data) {
data = new_data;
next = nullptr;
}
};
// Counts number of nodes in linked list
int countNodes(Node* head) {
// Initialize count with 0
int count = 0;
// Initialize curr with head of Linked List
Node* curr = head;
// Traverse till we reach nullptr
while (curr != nullptr) {
// Increment count by 1
count++;
// Move pointer to next node
curr = curr->next;
}
// Return the count of nodes
return count;
}
// Driver code
int main() {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
Node* head = new Node(1);
head->next = new Node(3);
head->next->next = new Node(1);
head->next->next->next = new Node(2);
head->next->next->next->next = new Node(1);
// Function call to count the number of nodes
cout << "Count of nodes is " << countNodes(head);
return 0;
}
C
// Iterative C program to find length or count of nodes in a
// linked list
#include <stdio.h>
#include <stdlib.h>
// Link list node
struct Node {
int data;
struct Node* next;
};
// Function to create a new node
struct Node* createNode(int new_data) {
struct Node* new_node =
(struct Node*)malloc(sizeof(struct Node));
new_node->data = new_data;
new_node->next = NULL;
return new_node;
}
// Counts number of nodes in linked list
int countNodes(struct Node* head) {
// Initialize count with 0
int count = 0;
// Initialize curr with head of Linked List
struct Node* curr = head;
// Traverse till we reach NULL
while (curr != NULL) {
// Increment count by 1
count++;
// Move pointer to next node
curr = curr->next;
}
// Return the count of nodes
return count;
}
// Driver code
int main() {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
struct Node* head = createNode(1);
head->next = createNode(3);
head->next->next = createNode(1);
head->next->next->next = createNode(2);
head->next->next->next->next = createNode(1);
// Function call
printf("Count of nodes is %d", countNodes(head));
return 0;
}
Java
// Iterative Java program to count the number of
// nodes in a linked list
// Node class to define a linked list node
class Node {
int data;
Node next;
// Constructor to initialize a new node with data
Node(int newData) {
data = newData;
next = null;
}
}
// Class to define methods related to the linked list
public class GFG {
// Counts number of nodes in linked list
public static int countNodes(Node head) {
// Initialize count with 0
int count = 0;
// Initialize curr with head of Linked List
Node curr = head;
// Traverse till we reach null
while (curr != null) {
// Increment count by 1
count++;
// Move pointer to next node
curr = curr.next;
}
// Return the count of nodes
return count;
}
// Driver code
public static void main(String[] args) {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
Node head = new Node(1);
head.next = new Node(3);
head.next.next = new Node(1);
head.next.next.next = new Node(2);
head.next.next.next.next = new Node(1);
// Function call to count the number of nodes
System.out.println("Count of nodes is "
+ countNodes(head));
}
}
Python
# Iterative Python program to count the number of nodes
# in a linked list
class Node:
def __init__(self, new_data):
# Constructor to initialize a new node with data
self.data = new_data
self.next = None
def count_nodes(head):
# Counts number of nodes in linked list
# Initialize count with 0
count = 0
# Initialize curr with head of Linked List
curr = head
# Traverse till we reach None
while curr is not None:
# Increment count by 1
count += 1
# Move pointer to next node
curr = curr.next
# Return the count of nodes
return count
# Driver code
if __name__ == "__main__":
# Create a hard-coded linked list:
# 1 -> 3 -> 1 -> 2 -> 1
head = Node(1)
head.next = Node(3)
head.next.next = Node(1)
head.next.next.next = Node(2)
head.next.next.next.next = Node(1)
# Function call to count the number of nodes
print("Count of nodes is", count_nodes(head))
C#
// Iterative C# program to find length or count of nodes
// in a linked list
using System;
// Link list node
class Node {
public int Data;
public Node Next;
// Constructor to initialize a new node with data
public Node(int newData) {
Data = newData;
Next = null;
}
}
class GFG {
// Counts number of nodes in linked list
static int CountNodes(Node head) {
// Initialize count with 0
int count = 0;
// Initialize curr with head of Linked List
Node curr = head;
// Traverse till we reach null
while (curr != null) {
// Increment count by 1
count++;
// Move pointer to next node
curr = curr.Next;
}
// Return the count of nodes
return count;
}
static void Main() {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
Node head = new Node(1);
head.Next = new Node(3);
head.Next.Next = new Node(1);
head.Next.Next.Next = new Node(2);
head.Next.Next.Next.Next = new Node(1);
// Function call to count the number of nodes
Console.WriteLine("Count of nodes is "
+ CountNodes(head));
}
}
JavaScript
// Iterative JavaScript program to find length
// or count of nodes in a linked list
// Linked List Node
class Node {
// Constructor to initialize a new node
// with data
constructor(newData) {
this.data = newData;
this.next = null;
}
}
// Counts number of nodes in linked list
function countNodes(head) {
// Initialize count with 0
let count = 0;
// Initialize curr with head of Linked List
let curr = head;
// Traverse till we reach null
while (curr !== null) {
// Increment count by 1
count++;
// Move pointer to next node
curr = curr.next;
}
// Return the count of nodes
return count;
}
// Driver code
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
let head = new Node(1);
head.next = new Node(3);
head.next.next = new Node(1);
head.next.next.next = new Node(2);
head.next.next.next.next = new Node(1);
// Function call to count the number of nodes
console.log("Count of nodes is " + countNodes(head));
OutputCount of nodes is 5
Time complexity: O(n), Where n is the size of the linked list
Auxiliary Space: O(1), As constant extra space is used.
Recursive Approach to Find the Length of a Linked List:
The idea is to use recursion by maintaining a function, say countNodes(node) which takes a node as an argument and calls itself with the next node until we reach the end of the Linked List. Each of the recursive call returns 1 + count of remaining nodes.
C++
// Recursive C++ program to find length
// or count of nodes in a linked list
#include <bits/stdc++.h>
using namespace std;
// Link list node
class Node {
public:
int data;
Node* next;
// Constructor to initialize a new node with data
Node(int new_data) {
data = new_data;
next = nullptr;
}
};
// Recursively count number of nodes in linked list
int countNodes(Node* head) {
// Base Case
if (head == NULL) {
return 0;
}
// Count this node plus the rest of the list
return 1 + countNodes(head->next);
}
// Driver code
int main() {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
Node* head = new Node(1);
head->next = new Node(3);
head->next->next = new Node(1);
head->next->next->next = new Node(2);
head->next->next->next->next = new Node(1);
// Function call to count the number of nodes
cout << "Count of nodes is " << countNodes(head);
return 0;
}
C
// Recursive C program to find length
// or count of nodes in a linked list
#include <stdio.h>
#include <stdlib.h>
// Link list node
struct Node {
int data;
struct Node* next;
};
// Constructor to initialize a new node with data
struct Node* createNode(int new_data) {
struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
new_node->data = new_data;
new_node->next = NULL;
return new_node;
}
// Recursively count number of nodes in linked list
int countNodes(struct Node* head) {
// Base Case
if (head == NULL) {
return 0;
}
// Count this node plus the rest of the list
return 1 + countNodes(head->next);
}
// Driver code
int main() {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
struct Node* head = createNode(1);
head->next = createNode(3);
head->next->next = createNode(1);
head->next->next->next = createNode(2);
head->next->next->next->next = createNode(1);
// Function call to count the number of nodes
printf("Count of nodes is %d\n", countNodes(head));
return 0;
}
Java
// Recursive Java program to find length
// or count of nodes in a linked list
// Link list node
class Node {
int data;
Node next;
// Constructor to initialize a new node with data
Node(int new_data) {
data = new_data;
next = null;
}
}
// Recursively count number of nodes in linked list
public class GFG {
public static int countNodes(Node head) {
// Base Case
if (head == null) {
return 0;
}
// Count this node plus the rest of the list
return 1 + countNodes(head.next);
}
public static void main(String[] args) {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
Node head = new Node(1);
head.next = new Node(3);
head.next.next = new Node(1);
head.next.next.next = new Node(2);
head.next.next.next.next = new Node(1);
// Function call to count the number of nodes
System.out.println("Count of nodes is "
+ countNodes(head));
}
}
Python
# Recursive Python program to find length
# or count of nodes in a linked list
# Linked List Node
class Node:
def __init__(self, new_data):
self.data = new_data
self.next = None
# Recursively count number of nodes in linked list
def count_nodes(head):
# Base Case
if head is None:
return 0
# Count this node plus the rest of the list
return 1 + count_nodes(head.next)
# Driver code
if __name__ == "__main__":
# Create a hard-coded linked list:
# 1 -> 3 -> 1 -> 2 -> 1
head = Node(1)
head.next = Node(3)
head.next.next = Node(1)
head.next.next.next = Node(2)
head.next.next.next.next = Node(1)
# Function call to count the number of nodes
print("Count of nodes is", count_nodes(head))
C#
// Recursive C# program to find length
// or count of nodes in a linked list
using System;
// Link list node
public class Node {
public int Data;
public Node Next;
// Constructor to initialize a new node with data
public Node(int new_data) {
Data = new_data;
Next = null;
}
}
// Recursively count number of nodes in linked list
public class GFG {
public static int CountNodes(Node head) {
// Base Case
if (head == null) {
return 0;
}
// Count this node plus the rest of the list
return 1 + CountNodes(head.Next);
}
// Driver code
public static void Main() {
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
Node head = new Node(1);
head.Next = new Node(3);
head.Next.Next = new Node(1);
head.Next.Next.Next = new Node(2);
head.Next.Next.Next.Next = new Node(1);
// Function call to count the number of nodes
Console.WriteLine("Count of nodes is " + CountNodes(head));
}
}
JavaScript
// Recursive Javascript program to find length
// or count of nodes in a linked list
// Link list node
class Node {
constructor(data) {
this.data = data;
this.next = null;
}
}
// Recursively count number of nodes in linked list
function countNodes(head) {
// Base Case
if (head === null) {
return 0;
}
// Count this node plus the rest of the list
return 1 + countNodes(head.next);
}
// Driver code
// Create a hard-coded linked list:
// 1 -> 3 -> 1 -> 2 -> 1
let head = new Node(1);
head.next = new Node(3);
head.next.next = new Node(1);
head.next.next.next = new Node(2);
head.next.next.next.next = new Node(1);
// Function call to count the number of nodes
console.log("Count of nodes is " + countNodes(head));
OutputCount of nodes is 5
Time Complexity: O(n), where n is the length of Linked List.
Auxiliary Space: O(n), Extra space is used in the recursion call stack.
Similar Reads
Linked List Data Structure A linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
3 min read
Basic Terminologies of Linked List Linked List is a linear data structure, in which elements are not stored at a contiguous location, rather they are linked using pointers. Linked List forms a series of connected nodes, where each node stores the data and the address of the next node.Node Structure: A node in a linked list typically
2 min read
Introduction to Linked List - Data Structure and Algorithm Tutorials Linked List is basically chains of nodes where each node contains information such as data and a pointer to the next node in the chain. It is a popular data structure with a wide range of real-world applications. Unlike Arrays, Linked List elements are not stored at a contiguous location. In the lin
9 min read
Applications, Advantages and Disadvantages of Linked List A Linked List is a linear data structure that is used to store a collection of data with the help of nodes. Please remember the following points before moving forward.The consecutive elements are connected by pointers / references.The last node of the linked list points to null.The entry point of a
4 min read
Linked List vs Array Array: Arrays store elements in contiguous memory locations, resulting in easily calculable addresses for the elements stored and this allows faster access to an element at a specific index.Data storage scheme of an arrayLinked List: Linked lists are less rigid in their storage structure and element
2 min read
Types of Linked List
Basic Operations on Linked List
Insertion in Linked ListInsertion in a linked list involves adding a new node at a specified position in the list. There are several types of insertion based on the position where the new node is to be added:At the front of the linked list Before a given node.After a given node.At a specific position.At the end of the link
4 min read
Search an element in a Linked List (Iterative and Recursive)Given a linked list and a key, the task is to check if key is present in the linked list or not. Examples:Input: 14 -> 21 -> 11 -> 30 -> 10, key = 14Output: YesExplanation: 14 is present in the linked list.Input: 6 -> 21 -> 17 -> 30 -> 10 -> 8, key = 13Output: NoExplanatio
12 min read
Find Length of a Linked List (Iterative and Recursive)Given a Singly Linked List, the task is to find the Length of the Linked List.Examples:Input: LinkedList = 1->3->1->2->1Output: 5Explanation: The linked list has 5 nodes.Input: LinkedList = 2->4->1->9->5->3->6Output: 7 Explanation: The linked list has 7 nodes.Input: Lin
11 min read
Reverse a Linked ListGiven a linked list, the task is to reverse the linked list by changing the links between nodes.Examples: Input: head: 1 -> 2 -> 3 -> 4 -> NULLOutput: head: 4 -> 3 -> 2 -> 1 -> NULLExplanation: Reversed Linked List: Input: head: 1 -> 2 -> 3 -> 4 -> 5 -> NULLOut
15+ min read
Deletion in Linked ListDeleting a node in a Linked List is an important operation and can be done in three main ways: removing the first node, removing a node in the middle, or removing the last node.In this article, we will explore deletion operation on Linked List for all the above scenarios. Types of Deletion in Linked
3 min read
Delete a Linked List node at a given positionGiven a singly linked list and a position (1-based indexing), the task is to delete a linked list node at the given position.Note: Position will be valid (i.e, 1 <= position <= linked list length)Example: Input: position = 2, Linked List = 8->2->3->1->7Output: Linked List = 8->3
8 min read
Write a function to delete a Linked ListGiven a linked list, the task is to delete the linked list completely.Examples:Input: head: 1 -> 2 -> 3 -> 4 -> 5 -> NULLOutput: NULLExplanation: Linked List is Deleted.Input: head: 1 -> 12 -> 1 -> 4 -> 1 -> NULLOutput: NULLExplanation: Linked List is Deleted.Table of C
9 min read
Write a function to get Nth node in a Linked ListGiven a LinkedList and an index (1-based). The task is to find the data value stored in the node at that kth position. If no such node exists whose index is k then return -1.Example:Â Input: 1->10->30->14, index = 2Output: 10Explanation: The node value at index 2 is 10 Input: 1->32->12
11 min read
Program for Nth node from the end of a Linked ListGiven a Linked List of M nodes and a number N, find the value at the Nth node from the end of the Linked List. If there is no Nth node from the end, print -1.Examples:Input: 1 -> 2 -> 3 -> 4, N = 3Output: 2Explanation: Node 2 is the third node from the end of the linked list.Input: 35 ->
14 min read
Top 50 Problems on Linked List Data Structure asked in SDE Interviews A Linked List is a linear data structure that looks like a chain of nodes, where each node is a different element. Unlike Arrays, Linked List elements are not stored at a contiguous location. Here is the collection of the Top 50 list of frequently asked interview questions on Linked Lists. Problems
3 min read