Deletion in Binary Search Tree (BST)
Last Updated :
14 Oct, 2025
Given the root of a Binary Search Tree (BST) and an integer x, delete the node with value x from the BST while maintaining the BST property.
Examples:
Input: x = 15
Output: [[10], [5, 18], [N, N, 12, N]]
Explanation: The node with value x (15) is deleted from BST.
Approach:
Deleting a node in a BST means removing the target node while ensuring that the tree remains a valid BST. Depending on the structure of the node to be deleted, there are three possible scenarios:
Case 1: Node has No Children (Leaf Node)
If the target node is a leaf node, it can be directly removed from the tree since it has no child to maintain.
Working:
Case 2: Node has One Child(Left or Right Child)
If the target node has only one child, we remove the node and connect its parent directly to its only child. This way, the tree remains valid after deletion of target node.
Working:
Case 3: Node has Two Children
If the target node has two children, deletion is slightly more complex.
To maintain the BST property, we need to find a replacement node for the target. The replacement can be either:
- The inorder successor — the smallest value in the right subtree, which is the next greater value than the target node.
- The inorder predecessor — the largest value in the left subtree, which is the next smaller value than the target node.
Once the replacement node is chosen, we replace the target node’s value with that node’s value, and then delete the replacement node, which will now fall under Case 1 (no children) or Case 2 (one child).
Note: Inorder predecessor can also be used.
Working:
The deletion process in BST depends on the number of children of the node.
- No children means simply remove the node.
- One child means remove the node and connect its parent to the node’s only child.
- Two children means replace the node with its inorder successor/predecessor and delete that node.
This ensures that the BST property remains intact after every deletion.
C++
//Driver Code Starts
#include <iostream>
#include<vector>
#include<unordered_map>
#include <queue>
using namespace std;
// Node structure
class Node {
public:
int data;
Node* left;
Node* right;
Node(int x) {
data = x;
left = right = nullptr;
}
};
// Calculate Height
int getHeight(Node* root, int h) {
if (root == nullptr) return h - 1;
return max(getHeight(root->left, h + 1),
getHeight(root->right, h + 1));
}
// Print Level Order
void levelOrder(Node* root) {
queue<pair<Node*, int>> q;
q.push({root, 0});
int lastLevel = 0;
// function to get the height of tree
int height = getHeight(root, 0);
// printing the level order of tree
while (!q.empty()) {
auto top = q.front(); q.pop();
Node* node = top.first;
int lvl = top.second;
if (lvl > lastLevel) {
cout << "
";
lastLevel = lvl;
}
// all levels are printed
if (lvl > height) break;
if (node->data != -1) cout << node->data << " ";
// printing null node
else cout << "N ";
// null node has no children
if (node->data == -1) continue;
if (node->left == nullptr) q.push({new Node(-1), lvl + 1});
else q.push({node->left, lvl + 1});
if (node->right == nullptr) q.push({new Node(-1), lvl + 1});
else q.push({node->right, lvl + 1});
}
}
//Driver Code Ends
// Get inorder successor (smallest in right subtree)
Node* getSuccessor(Node* curr) {
curr = curr->right;
while (curr != nullptr && curr->left != nullptr)
curr = curr->left;
return curr;
}
// Delete a node with value x from BST
Node* delNode(Node* root, int x) {
if (root == nullptr)
return root;
if (root->data > x)
root->left = delNode(root->left, x);
else if (root->data < x)
root->right = delNode(root->right, x);
else {
// Node with 0 or 1 child
if (root->left == nullptr) {
Node* temp = root->right;
delete root;
return temp;
}
if (root->right == nullptr) {
Node* temp = root->left;
delete root;
return temp;
}
// Node with 2 children
Node* succ = getSuccessor(root);
root->data = succ->data;
root->right = delNode(root->right, succ->data);
}
return root;
}
//Driver Code Starts
int main() {
Node* root = new Node(10);
root->left = new Node(5);
root->right = new Node(15);
root->right->left = new Node(12);
root->right->right = new Node(18);
int x = 15;
root = delNode(root, x);
levelOrder(root);
return 0;
}
//Driver Code Ends
C
//Driver Code Starts
#include <stdio.h>
#include <stdlib.h>
// Node structure
struct Node
{
int data;
struct Node *left;
struct Node *right;
};
// Function to create a new node
struct Node *createNode(int x)
{
struct Node *newNode = (struct Node *)malloc(sizeof(struct Node));
newNode->data = x;
newNode->left = newNode->right = NULL;
return newNode;
}
// Function to find the height of the tree
int getHeight(struct Node *root, int h)
{
if (root == NULL)
return h - 1;
int leftHeight = getHeight(root->left, h + 1);
int rightHeight = getHeight(root->right, h + 1);
return (leftHeight > rightHeight) ? leftHeight : rightHeight;
}
// Queue structure for level order traversal
struct QueueNode
{
struct Node *node;
int level;
};
struct Queue
{
struct QueueNode arr[100];
int front, rear;
};
// Initialize queue
void initQueue(struct Queue *q)
{
q->front = 0;
q->rear = 0;
}
// Enqueue
void enqueue(struct Queue *q, struct Node *node, int level)
{
q->arr[q->rear].node = node;
q->arr[q->rear].level = level;
q->rear++;
}
// Dequeue
struct QueueNode dequeue(struct Queue *q)
{
return q->arr[q->front++];
}
// Check if queue is empty
int isEmpty(struct Queue *q)
{
return q->front == q->rear;
}
// Function to print Level Order Traversal
void levelOrder(struct Node *root)
{
if (root == NULL)
return;
struct Queue q;
initQueue(&q);
enqueue(&q, root, 0);
int lastLevel = 0;
// function to get height of the tree
int height = getHeight(root, 0);
// printing level order of the tree
while (!isEmpty(&q))
{
struct QueueNode temp = dequeue(&q);
struct Node *node = temp.node;
int lvl = temp.level;
if (lvl > lastLevel)
{
printf("
");
lastLevel = lvl;
}
// all levels are printed
if (lvl > height)
break;
// Printing null nodes
if (node->data != -1)
printf("%d ", node->data);
else
printf("N ");
// null node has no children
if (node->data == -1)
continue;
if (node->left == NULL)
enqueue(&q, createNode(-1), lvl + 1);
else
enqueue(&q, node->left, lvl + 1);
if (node->right == NULL)
enqueue(&q, createNode(-1), lvl + 1);
else
enqueue(&q, node->right, lvl + 1);
}
}
//Driver Code Ends
// the inorder successor (smallest in right subtree)
struct Node *getSuccessor(struct Node *curr)
{
curr = curr->right;
while (curr != NULL && curr->left != NULL)
curr = curr->left;
return curr;
}
// Function to delete a node with value x from BST
struct Node *delNode(struct Node *root, int x)
{
if (root == NULL)
return root;
if (root->data > x)
root->left = delNode(root->left, x);
else if (root->data < x)
root->right = delNode(root->right, x);
else
{
// Node with 0 or 1 child
if (root->left == NULL)
{
struct Node *temp = root->right;
free(root);
return temp;
}
if (root->right == NULL)
{
struct Node *temp = root->left;
free(root);
return temp;
}
// Node with 2 children
struct Node *succ = getSuccessor(root);
root->data = succ->data;
root->right = delNode(root->right, succ->data);
}
return root;
}
//Driver Code Starts
int main()
{
struct Node *root = createNode(10);
root->left = createNode(5);
root->right = createNode(15);
root->right->left = createNode(12);
root->right->right = createNode(18);
int x = 15;
root = delNode(root, x);
levelOrder(root);
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
import java.util.LinkedList;
import java.util.Queue;
import java.util.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
// Node structure
class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = right = null;
}
}
class GfG {
// Calculate Height
static int getHeight( Node root, int h ) {
if( root == null ) return h-1;
return Math.max(getHeight(root.left, h+1), getHeight(root.right, h+1));
}
// Print Level Order
static void levelOrder(Node root) {
Queue<List<Object>> queue = new LinkedList<>();
queue.offer(List.of(root, 0));
int lastLevel = 0;
// function to get the height of tree
int height = getHeight(root, 0);
// printing the level order of tree
while( !queue.isEmpty()) {
List<Object> top = queue.poll();
Node node = (Node) top.get(0);
int lvl = (int) top.get(1);
if( lvl > lastLevel ) {
System.out.println();
lastLevel = lvl;
}
// all levels are printed
if( lvl > height ) break;
// printing null node
System.out.print((node.data == -1 ? "N" : node.data) + " ");
// null node has no children
if( node.data == -1 ) continue;
if( node.left == null ) queue.offer(List.of(new Node(-1), lvl+1));
else queue.offer(List.of(node.left, lvl+1));
if( node.right == null ) queue.offer(List.of(new Node(-1), lvl+1));
else queue.offer(List.of(node.right, lvl+1));
}
}
//Driver Code Ends
// Get inorder successor (smallest in right subtree)
static Node getSuccessor(Node curr) {
curr = curr.right;
while (curr != null && curr.left != null) {
curr = curr.left;
}
return curr;
}
// Delete a node with value x from BST
static Node delNode(Node root, int x) {
if (root == null) return root;
if (root.data > x) {
root.left = delNode(root.left, x);
} else if (root.data < x) {
root.right = delNode(root.right, x);
} else {
// Node with 0 or 1 child
if (root.left == null) return root.right;
if (root.right == null) return root.left;
// Node with 2 children
Node succ = getSuccessor(root);
root.data = succ.data;
root.right = delNode(root.right, succ.data);
}
return root;
}
//Driver Code Starts
public static void main(String[] args) {
Node root = new Node(10);
root.left = new Node(5);
root.right = new Node(15);
root.right.left = new Node(12);
root.right.right = new Node(18);
int x = 15;
root = delNode(root, x);
levelOrder(root);
}
}
//Driver Code Ends
Python
#Driver Code Starts
from collections import deque
# Node structure
class Node:
def __init__(self, x):
self.data = x
self.left = None
self.right = None
# Calculate Height
def getHeight(root, h):
if root is None:
return h - 1
return max(getHeight(root.left, h + 1),
getHeight(root.right, h + 1))
# Print Level Order
def levelOrder(root):
q = deque()
q.append((root, 0))
lastLevel = 0
# function to get the height of tree
height = getHeight(root, 0)
# printing the level order of tree
while q:
node, lvl = q.popleft()
if lvl > lastLevel:
print()
lastLevel = lvl
# all levels are printed
if lvl > height:
break
# printing null nodes
if node.data != -1:
print(node.data, end=" ")
else:
print("N", end=" ")
# null node has no children
if node.data == -1:
continue
if node.left is None:
q.append((Node(-1), lvl + 1))
else:
q.append((node.left, lvl + 1))
if node.right is None:
q.append((Node(-1), lvl + 1))
else:
q.append((node.right, lvl + 1))
#Driver Code Ends
# Get inorder successor (smallest in right subtree)
def getSuccessor(curr):
curr = curr.right
while curr is not None and curr.left is not None:
curr = curr.left
return curr
# Delete a node with value x from BST
def delNode(root, x):
if root is None:
return root
if root.data > x:
root.left = delNode(root.left, x)
elif root.data < x:
root.right = delNode(root.right, x)
else:
# node with 0 or 1 children
if root.left is None:
return root.right
if root.right is None:
return root.left
# Node with 2 children
succ = getSuccessor(root)
root.data = succ.data
root.right = delNode(root.right, succ.data)
return root
#Driver Code Starts
if __name__ == "__main__":
root = Node(10)
root.left = Node(5)
root.right = Node(15)
root.right.left = Node(12)
root.right.right = Node(18)
x = 15
root = delNode(root, x)
levelOrder(root)
#Driver Code Ends
C#
//Driver Code Starts
using System;
using System.Collections.Generic;
// Node structure
class Node {
public int data;
public Node left, right;
public Node(int x)
{
data = x;
left = right = null;
}
}
class GfG {
// Calculate Height
static int getHeight(Node root, int h)
{
if (root == null)
return h - 1;
return Math.Max(getHeight(root.left, h + 1),
getHeight(root.right, h + 1));
}
// Print Level Order
static void levelOrder(Node root)
{
Queue<(Node, int)> q = new Queue<(Node, int)>();
q.Enqueue((root, 0));
int lastLevel = 0;
// function to get the height of tree
int height = getHeight(root, 0);
// printing the level order of the tree
while (q.Count > 0) {
var(node, lvl) = q.Dequeue();
if (lvl > lastLevel) {
Console.WriteLine();
lastLevel = lvl;
}
//all levels are printed
if (lvl > height)
break;
// printing null nodes
if (node.data != -1)
Console.Write(node.data + " ");
else
Console.Write("N ");
// null node has no children
if (node.data == -1)
continue;
if (node.left == null)
q.Enqueue((new Node(-1), lvl + 1));
else
q.Enqueue((node.left, lvl + 1));
if (node.right == null)
q.Enqueue((new Node(-1), lvl + 1));
else
q.Enqueue((node.right, lvl + 1));
}
}
//Driver Code Ends
// Get inorder successor (smallest in right subtree)
static Node getSuccessor(Node curr)
{
curr = curr.right;
while (curr != null && curr.left != null)
curr = curr.left;
return curr;
}
// Delete a node with value x from BST
static Node delNode(Node root, int x)
{
if (root == null)
return root;
if (root.data > x)
root.left = delNode(root.left, x);
else if (root.data < x)
root.right = delNode(root.right, x);
else {
// Node with 0 or 1 child
if (root.left == null)
return root.right;
if (root.right == null)
return root.left;
// Node with 2 children
Node succ = getSuccessor(root);
root.data = succ.data;
root.right = delNode(root.right, succ.data);
}
return root;
}
//Driver Code Starts
static void Main()
{
Node root = new Node(10);
root.left = new Node(5);
root.right = new Node(15);
root.right.left = new Node(12);
root.right.right = new Node(18);
int x = 15;
root = delNode(root, x);
levelOrder(root);
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
const Denque = require("denque");
// Node structure
class Node {
constructor(x) {
this.data = x;
this.left = null;
this.right = null;
}
}
// Calculate Height
function getHeight(root, h) {
if (root === null) return h - 1;
return Math.max(getHeight(root.left, h + 1),
getHeight(root.right, h + 1));
}
// Print Level Order
function levelOrder(root) {
const q = new Denque();
q.push([root, 0]);
let lastLevel = 0;
// function to get height of the tree
const height = getHeight(root, 0);
// printing level order of the tree
while (!q.isEmpty()) {
const [node, lvl] = q.shift();
if (lvl > lastLevel) {
console.log();
lastLevel = lvl;
}
// all levels are printed
if (lvl > height) break;
// printing null nodes
if (node.data !== -1)
process.stdout.write(node.data + " ");
else
process.stdout.write("N ");
// null node has no children
if (node.data === -1) continue;
if (node.left === null) q.push([new Node(-1), lvl + 1]);
else q.push([node.left, lvl + 1]);
if (node.right === null) q.push([new Node(-1), lvl + 1]);
else q.push([node.right, lvl + 1]);
}
}
//Driver Code Ends
// Get inorder successor (smallest in right subtree)
function getSuccessor(curr) {
curr = curr.right;
while (curr !== null && curr.left !== null)
curr = curr.left;
return curr;
}
// Delete a node with value x from BST
function delNode(root, x) {
if (root === null)
return root;
if (root.data > x)
root.left = delNode(root.left, x);
else if (root.data < x)
root.right = delNode(root.right, x);
else {
// Node with 0 or 1 child
if (root.left === null)
return root.right;
if (root.right === null)
return root.left;
// Node with 2 children
const succ = getSuccessor(root);
root.data = succ.data;
root.right = delNode(root.right, succ.data);
}
return root;
}
//Driver Code Starts
// Driver code
let root = new Node(10);
root.left = new Node(5);
root.right = new Node(15);
root.right.left = new Node(12);
root.right.right = new Node(18);
const x = 15;
root = delNode(root, x);
levelOrder(root);
//Driver Code Ends
Time Complexity: O(h), where h is the height of the BST.
Auxiliary Space: O(h).
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem