Open In App

Deletion in an AVL Tree

Last Updated : 19 Jun, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
 

We have discussed Insertion of AVL Tree. In this post, we will follow a similar approach for deletion.

Steps to follow for deletion
To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Following are two basic operations that can be performed to re-balance a BST without violating the BST property (keys(left) < key(root) < keys(right)). 

  1. Left Rotation
  2. Right Rotation
Deletion-in-an-AVL-Tree_
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

Example:  

C++
#include <bits/stdc++.h>
using namespace std;

// An AVL tree node
class Node {
public:
    int key;
    Node *left;
    Node *right;
    int height;

    Node(int k) {
        key = k;
        left = nullptr;
        right = nullptr;
        height = 1;
    }
};

// A utility function to get the height 
// of the tree
int height(Node *N) {
    if (N == nullptr)
        return 0;
    return N->height;
}

// A utility function to right rotate 
// subtree rooted with y
Node *rightRotate(Node *y) {
    Node *x = y->left;
    Node *T2 = x->right;

    // Perform rotation
    x->right = y;
    y->left = T2;

    // Update heights
    y->height = 1 + max(height(y->left),
                height(y->right));
    x->height = 1 + (height(x->left),
                height(x->right));

    // Return new root
    return x;
}

// A utility function to left rotate 
// subtree rooted with x
Node *leftRotate(Node *x) {
    Node *y = x->right;
    Node *T2 = y->left;

    // Perform rotation
    y->left = x;
    x->right = T2;

    // Update heights
    x->height = 1 + max(height(x->left),
                height(x->right));
    y->height = 1 + max(height(y->left),
                height(y->right));

    // Return new root
    return y;
}

// Get Balance factor of node N
int getBalance(Node *N) {
    if (N == nullptr)
        return 0;
    return height(N->left) - 
           height(N->right);
}

Node* insert(Node* node, int key) {
    // 1. Perform the normal BST rotation
    if (node == nullptr)
        return new Node(key);

    if (key < node->key)
        node->left = insert(node->left, key);
    else if (key > node->key)
        node->right = insert(node->right, key);
    else // Equal keys not allowed
        return node;

    // 2. Update height of this ancestor node
    node->height = 1 + max(height(node->left), 
                   height(node->right));

    // 3. Get the balance factor of this 
    // ancestor node to check whether this 
    // node became unbalanced
    int balance = getBalance(node);

    // If this node becomes unbalanced, then 
    // there are 4 cases

    // Left Left Case
    if (balance > 1 && key < node->left->key)
        return rightRotate(node);

    // Right Right Case
    if (balance < -1 && key > node->right->key)
        return leftRotate(node);

    // Left Right Case
    if (balance > 1 && key > node->left->key) {
        node->left = leftRotate(node->left);
        return rightRotate(node);
    }

    // Right Left Case
    if (balance < -1 && key < node->right->key) {
        node->right = rightRotate(node->right);
        return leftRotate(node);
    }

    // return the (unchanged) node pointer
    return node;
}

// Given a non-empty binary search tree, 
// return the node with minimum key value 
// found in that tree. Note that the entire 
// tree does not need to be searched.
Node * minValueNode(Node* node) {
    Node* current = node;

    // loop down to find the leftmost leaf
    while (current->left != nullptr)
        current = current->left;

    return current;
}

// Recursive function to delete a node with 
// given key from subtree with given root. 
// It returns root of the modified subtree.
Node* deleteNode(Node* root, int key) {
    // STEP 1: PERFORM STANDARD BST DELETE
    if (root == nullptr)
        return root;

    // If the key to be deleted is smaller 
    // than the root's key, then it lies in 
    // left subtree
    if (key < root->key)
        root->left = deleteNode(root->left, key);

    // If the key to be deleted is greater 
    // than the root's key, then it lies in 
    // right subtree
    else if (key > root->key)
        root->right = deleteNode(root->right, key);

    // if key is same as root's key, then 
    // this is the node to be deleted
    else {
        // node with only one child or no child
        if ((root->left == nullptr) || 
            (root->right == nullptr)) {
            Node *temp = root->left ? 
                         root->left : root->right;

            // No child case
            if (temp == nullptr) {
                temp = root;
                root = nullptr;
            } else // One child case
                *root = *temp; // Copy the contents of 
                               // the non-empty child
            free(temp);
        } else {
            // node with two children: Get the 
            // inorder successor (smallest in 
            // the right subtree)
            Node* temp = minValueNode(root->right);

            // Copy the inorder successor's 
            // data to this node
            root->key = temp->key;

            // Delete the inorder successor
            root->right = deleteNode(root->right, temp->key);
        }
    }

    // If the tree had only one node then return
    if (root == nullptr)
        return root;

    // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
    root->height = 1 + max(height(root->left), 
                   height(root->right));

    // STEP 3: GET THE BALANCE FACTOR OF THIS 
    // NODE (to check whether this node 
    // became unbalanced)
    int balance = getBalance(root);

    // If this node becomes unbalanced, then 
    // there are 4 cases

    // Left Left Case
    if (balance > 1 && 
        getBalance(root->left) >= 0)
        return rightRotate(root);

    // Left Right Case
    if (balance > 1 && 
        getBalance(root->left) < 0) {
        root->left = leftRotate(root->left);
        return rightRotate(root);
    }

    // Right Right Case
    if (balance < -1 && 
        getBalance(root->right) <= 0)
        return leftRotate(root);

    // Right Left Case
    if (balance < -1 && 
        getBalance(root->right) > 0) {
        root->right = rightRotate(root->right);
        return leftRotate(root);
    }

    return root;
}

// A utility function to print preorder 
// traversal of the tree. 
void preOrder(Node *root) {
    if (root != nullptr) {
        cout << root->key << " ";
        preOrder(root->left);
        preOrder(root->right);
    }
}

// Driver Code
int main() {
    Node *root = nullptr;

    // Constructing tree given in the 
    // above figure
    root = insert(root, 9);
    root = insert(root, 5);
    root = insert(root, 10);
    root = insert(root, 0);
    root = insert(root, 6);
    root = insert(root, 11);
    root = insert(root, -1);
    root = insert(root, 1);
    root = insert(root, 2);

    cout << "Preorder traversal of the "
            "constructed AVL tree is \n";
    preOrder(root);

    root = deleteNode(root, 10);

    cout << "\nPreorder traversal after"
            " deletion of 10 \n";
    preOrder(root);

    return 0;
}
C
// C program to delete a node from AVL Tree
#include<stdio.h>
#include<stdlib.h>

// An AVL tree node
struct Node
{
    int key;
    struct Node *left;
    struct Node *right;
    int height;
};

// A utility function to get maximum of two integers
int max(int a, int b);

// A utility function to get height of the tree
int height(struct Node *N)
{
    if (N == NULL)
        return 0;
    return N->height;
}

// A utility function to get maximum of two integers
int max(int a, int b)
{
    return (a > b)? a : b;
}

/* Helper function that allocates a new node with the given key and
    NULL left and right pointers. */
struct Node* newNode(int key)
{
    struct Node* node = (struct Node*)
                        malloc(sizeof(struct Node));
    node->key   = key;
    node->left   = NULL;
    node->right  = NULL;
    node->height = 1;  // new node is initially added at leaf
    return(node);
}

// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
    struct Node *x = y->left;
    struct Node *T2 = x->right;

    // Perform rotation
    x->right = y;
    y->left = T2;

    // Update heights
    y->height = max(height(y->left), height(y->right))+1;
    x->height = max(height(x->left), height(x->right))+1;

    // Return new root
    return x;
}

// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
    struct Node *y = x->right;
    struct Node *T2 = y->left;

    // Perform rotation
    y->left = x;
    x->right = T2;

    //  Update heights
    x->height = max(height(x->left), height(x->right))+1;
    y->height = max(height(y->left), height(y->right))+1;

    // Return new root
    return y;
}

// Get Balance factor of node N
int getBalance(struct Node *N)
{
    if (N == NULL)
        return 0;
    return height(N->left) - height(N->right);
}

struct Node* insert(struct Node* node, int key)
{
    /* 1.  Perform the normal BST rotation */
    if (node == NULL)
        return(newNode(key));

    if (key < node->key)
        node->left  = insert(node->left, key);
    else if (key > node->key)
        node->right = insert(node->right, key);
    else // Equal keys not allowed
        return node;

    /* 2. Update height of this ancestor node */
    node->height = 1 + max(height(node->left),
                           height(node->right));

    /* 3. Get the balance factor of this ancestor
          node to check whether this node became
          unbalanced */
    int balance = getBalance(node);

    // If this node becomes unbalanced, then there are 4 cases

    // Left Left Case
    if (balance > 1 && key < node->left->key)
        return rightRotate(node);

    // Right Right Case
    if (balance < -1 && key > node->right->key)
        return leftRotate(node);

    // Left Right Case
    if (balance > 1 && key > node->left->key)
    {
        node->left =  leftRotate(node->left);
        return rightRotate(node);
    }

    // Right Left Case
    if (balance < -1 && key < node->right->key)
    {
        node->right = rightRotate(node->right);
        return leftRotate(node);
    }

    /* return the (unchanged) node pointer */
    return node;
}

/* Given a non-empty binary search tree, return the
   node with minimum key value found in that tree.
   Note that the entire tree does not need to be
   searched. */
struct Node * minValueNode(struct Node* node)
{
    struct Node* current = node;

    /* loop down to find the leftmost leaf */
    while (current->left != NULL)
        current = current->left;

    return current;
}

// Recursive function to delete a node with given key
// from subtree with given root. It returns root of
// the modified subtree.
struct Node* deleteNode(struct Node* root, int key)
{
    // STEP 1: PERFORM STANDARD BST DELETE

    if (root == NULL)
        return root;

    // If the key to be deleted is smaller than the
    // root's key, then it lies in left subtree
    if ( key < root->key )
        root->left = deleteNode(root->left, key);

    // If the key to be deleted is greater than the
    // root's key, then it lies in right subtree
    else if( key > root->key )
        root->right = deleteNode(root->right, key);

    // if key is same as root's key, then This is
    // the node to be deleted
    else
    {
        // node with only one child or no child
        if( (root->left == NULL) || (root->right == NULL) )
        {
            struct Node *temp = root->left ? root->left :
                                             root->right;

            // No child case
            if (temp == NULL)
            {
                temp = root;
                root = NULL;
            }
            else // One child case
             *root = *temp; // Copy the contents of
                            // the non-empty child
            free(temp);
        }
        else
        {
            // node with two children: Get the inorder
            // successor (smallest in the right subtree)
            struct Node* temp = minValueNode(root->right);

            // Copy the inorder successor's data to this node
            root->key = temp->key;

            // Delete the inorder successor
            root->right = deleteNode(root->right, temp->key);
        }
    }

    // If the tree had only one node then return
    if (root == NULL)
      return root;

    // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
    root->height = 1 + max(height(root->left),
                           height(root->right));

    // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to
    // check whether this node became unbalanced)
    int balance = getBalance(root);

    // If this node becomes unbalanced, then there are 4 cases

    // Left Left Case
    if (balance > 1 && getBalance(root->left) >= 0)
        return rightRotate(root);

    // Left Right Case
    if (balance > 1 && getBalance(root->left) < 0)
    {
        root->left =  leftRotate(root->left);
        return rightRotate(root);
    }

    // Right Right Case
    if (balance < -1 && getBalance(root->right) <= 0)
        return leftRotate(root);

    // Right Left Case
    if (balance < -1 && getBalance(root->right) > 0)
    {
        root->right = rightRotate(root->right);
        return leftRotate(root);
    }

    return root;
}

// A utility function to print preorder traversal of
// the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
    if(root != NULL)
    {
        printf("%d ", root->key);
        preOrder(root->left);
        preOrder(root->right);
    }
}

/* Driver program to test above function*/
int main()
{
  struct Node *root = NULL;

  /* Constructing tree given in the above figure */
    root = insert(root, 9);
    root = insert(root, 5);
    root = insert(root, 10);
    root = insert(root, 0);
    root = insert(root, 6);
    root = insert(root, 11);
    root = insert(root, -1);
    root = insert(root, 1);
    root = insert(root, 2);

    /* The constructed AVL Tree would be
            9
           /  \
          1    10
        /  \     \
       0    5     11
      /    /  \
     -1   2    6
    */

    printf("Preorder traversal of the constructed AVL "
           "tree is \n");
    preOrder(root);

    root = deleteNode(root, 10);

    /* The AVL Tree after deletion of 10
            1
           /  \
          0    9
        /     /  \
       -1    5     11
           /  \
          2    6
    */

    printf("\nPreorder traversal after deletion of 10 \n");
    preOrder(root);

    return 0;
}
Java
class Node {
    int key;
    Node left, right;
    int height;

    Node(int k) {
        key = k;
        left = right = null;
        height = 1;
    }
}

public class Main {

    // A utility function to get the height 
    // of the tree
    static int height(Node N) {
        if (N == null)
            return 0;
        return N.height;
    }

    // A utility function to right rotate 
    // subtree rooted with y
    static Node rightRotate(Node y) {
        Node x = y.left;
        Node T2 = x.right;

        // Perform rotation
        x.right = y;
        y.left = T2;

        // Update heights
        y.height = Math.max(height(y.left), 
                            height(y.right)) + 1;
        x.height = Math.max(height(x.left), 
                            height(x.right)) + 1;

        // Return new root
        return x;
    }

    // A utility function to left rotate 
    // subtree rooted with x
    static Node leftRotate(Node x) {
        Node y = x.right;
        Node T2 = y.left;

        // Perform rotation
        y.left = x;
        x.right = T2;

        // Update heights
        x.height = Math.max(height(x.left), 
                            height(x.right)) + 1;
        y.height = Math.max(height(y.left), 
                            height(y.right)) + 1;

        // Return new root
        return y;
    }

    // Get Balance factor of node N
    static int getBalance(Node N) {
        if (N == null)
            return 0;
        return height(N.left) - height(N.right);
    }

    static Node insert(Node node, int key) {
        // 1. Perform the normal BST insertion
        if (node == null)
            return new Node(key);

        if (key < node.key)
            node.left = insert(node.left, key);
        else if (key > node.key)
            node.right = insert(node.right, key);
        else // Duplicate keys not allowed
            return node;

        // 2. Update height of this ancestor node
        node.height = Math.max(height(node.left), 
                               height(node.right)) + 1;

        // 3. Get the balance factor of this node
        // to check whether this node became 
        // unbalanced
        int balance = getBalance(node);

        // If this node becomes unbalanced, then
        // there are 4 cases

        // Left Left Case
        if (balance > 1 && key < node.left.key)
            return rightRotate(node);

        // Right Right Case
        if (balance < -1 && key > node.right.key)
            return leftRotate(node);

        // Left Right Case
        if (balance > 1 && key > node.left.key) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // Right Left Case
        if (balance < -1 && key < node.right.key) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // Given a non-empty binary search tree, 
    // return the node with minimum key value 
    // found in that tree.
    static Node minValueNode(Node node) {
        Node current = node;

        // loop down to find the leftmost leaf
        while (current.left != null)
            current = current.left;

        return current;
    }

    // Recursive function to delete a node with 
    // given key from subtree with given root. 
    // It returns root of the modified subtree.
    static Node deleteNode(Node root, int key) {
        // STEP 1: PERFORM STANDARD BST DELETE
        if (root == null)
            return root;

        // If the key to be deleted is smaller 
        // than the root's key, then it lies in 
        // left subtree
        if (key < root.key)
            root.left = deleteNode(root.left, key);

        // If the key to be deleted is greater 
        // than the root's key, then it lies in 
        // right subtree
        else if (key > root.key)
            root.right = deleteNode(root.right, key);

        // if key is same as root's key, then 
        // this is the node to be deleted
        else {
            // node with only one child or no child
            if ((root.left == null) || 
                (root.right == null)) {
                Node temp = root.left != null ? 
                            root.left : root.right;

                // No child case
                if (temp == null) {
                    temp = root;
                    root = null;
                } else // One child case
                    root = temp; // Copy the contents of 
                                 // the non-empty child
            } else {
                // node with two children: Get the 
                // inorder successor (smallest in 
                // the right subtree)
                Node temp = minValueNode(root.right);

                // Copy the inorder successor's 
                // data to this node
                root.key = temp.key;

                // Delete the inorder successor
                root.right = deleteNode(root.right, temp.key);
            }
        }

        // If the tree had only one node then return
        if (root == null)
            return root;

        // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
        root.height = Math.max(height(root.left), 
                               height(root.right)) + 1;

        // STEP 3: GET THE BALANCE FACTOR OF THIS 
        // NODE (to check whether this node 
        // became unbalanced)
        int balance = getBalance(root);

        // If this node becomes unbalanced, then 
        // there are 4 cases

        // Left Left Case
        if (balance > 1 && getBalance(root.left) >= 0)
            return rightRotate(root);

        // Left Right Case
        if (balance > 1 && getBalance(root.left) < 0) {
            root.left = leftRotate(root.left);
            return rightRotate(root);
        }

        // Right Right Case
        if (balance < -1 && getBalance(root.right) <= 0)
            return leftRotate(root);

        // Right Left Case
        if (balance < -1 && getBalance(root.right) > 0) {
            root.right = rightRotate(root.right);
            return leftRotate(root);
        }

        return root;
    }

    // A utility function to print preorder 
    // traversal of the tree.
    static void preOrder(Node root) {
        if (root != null) {
            System.out.print(root.key + " ");
            preOrder(root.left);
            preOrder(root.right);
        }
    }

    // Driver Code
    public static void main(String[] args) {
        Node root = null;

        // Constructing tree given in the 
        // above figure
        root = insert(root, 9);
        root = insert(root, 5);
        root = insert(root, 10);
        root = insert(root, 0);
        root = insert(root, 6);
        root = insert(root, 11);
        root = insert(root, -1);
        root = insert(root, 1);
        root = insert(root, 2);

        System.out.println("Preorder traversal of the "
                + "constructed AVL tree is:");
        preOrder(root);

        root = deleteNode(root, 10);

        System.out.println("\nPreorder traversal after"
                + " deletion of 10:");
        preOrder(root);
    }
}
Python
class Node:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.height = 1

def height(N):
    if N is None:
        return 0
    return N.height

def right_rotate(y):
    x = y.left
    T2 = x.right

    # Perform rotation
    x.right = y
    y.left = T2

    # Update heights
    y.height = max(height(y.left), 
                   height(y.right)) + 1
    x.height = max(height(x.left), 
                   height(x.right)) + 1

    # Return new root
    return x

def left_rotate(x):
    y = x.right
    T2 = y.left

    # Perform rotation
    y.left = x
    x.right = T2

    # Update heights
    x.height = max(height(x.left), 
                   height(x.right)) + 1
    y.height = max(height(y.left), 
                   height(y.right)) + 1

    # Return new root
    return y

def get_balance(N):
    if N is None:
        return 0
    return height(N.left) - height(N.right)

def insert(node, key):
    # 1. Perform the normal BST insertion
    if node is None:
        return Node(key)

    if key < node.key:
        node.left = insert(node.left, key)
    elif key > node.key:
        node.right = insert(node.right, key)
    else:  # Duplicate keys not allowed
        return node

    # 2. Update height of this ancestor node
    node.height = max(height(node.left), 
                      height(node.right)) + 1

    # 3. Get the balance factor of this node
    # to check whether this node became 
    # unbalanced
    balance = get_balance(node)

    # If this node becomes unbalanced, then
    # there are 4 cases

    # Left Left Case
    if balance > 1 and key < node.left.key:
        return right_rotate(node)

    # Right Right Case
    if balance < -1 and key > node.right.key:
        return left_rotate(node)

    # Left Right Case
    if balance > 1 and key > node.left.key:
        node.left = left_rotate(node.left)
        return right_rotate(node)

    # Right Left Case
    if balance < -1 and key < node.right.key:
        node.right = right_rotate(node.right)
        return left_rotate(node)

    return node

def min_value_node(node):
    current = node

    # loop down to find the leftmost leaf
    while current.left is not None:
        current = current.left

    return current

def delete_node(root, key):
    # STEP 1: PERFORM STANDARD BST DELETE
    if root is None:
        return root

    # If the key to be deleted is smaller 
    # than the root's key, then it lies in 
    # left subtree
    if key < root.key:
        root.left = delete_node(root.left, key)

    # If the key to be deleted is greater 
    # than the root's key, then it lies in 
    # right subtree
    elif key > root.key:
        root.right = delete_node(root.right, key)

    # if key is same as root's key, then 
    # this is the node to be deleted
    else:
        # node with only one child or no child
        if root.left is None or root.right is None:
            temp = root.left if root.left else root.right

            # No child case
            if temp is None:
                root = None
            else:  # One child case
                root = temp

        else:
            # node with two children: Get the 
            # inorder successor (smallest in 
            # the right subtree)
            temp = min_value_node(root.right)

            # Copy the inorder successor's 
            # data to this node
            root.key = temp.key

            # Delete the inorder successor
            root.right = delete_node(root.right, temp.key)

    # If the tree had only one node then return
    if root is None:
        return root

    # STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
    root.height = max(height(root.left), 
                      height(root.right)) + 1

    # STEP 3: GET THE BALANCE FACTOR OF THIS 
    # NODE (to check whether this node 
    # became unbalanced)
    balance = get_balance(root)

    # If this node becomes unbalanced, then 
    # there are 4 cases

    # Left Left Case
    if balance > 1 and get_balance(root.left) >= 0:
        return right_rotate(root)

    # Left Right Case
    if balance > 1 and get_balance(root.left) < 0:
        root.left = left_rotate(root.left)
        return right_rotate(root)

    # Right Right Case
    if balance < -1 and get_balance(root.right) <= 0:
        return left_rotate(root)

    # Right Left Case
    if balance < -1 and get_balance(root.right) > 0:
        root.right = right_rotate(root.right)
        return left_rotate(root)

    return root

def pre_order(root):
    if root is not None:
        print("{0} ".format(root.key), end="")
        pre_order(root.left)
        pre_order(root.right)

# Driver Code
if __name__ == "__main__":
    root = None

    # Constructing tree given in the 
    # above figure
    root = insert(root, 9)
    root = insert(root, 5)
    root = insert(root, 10)
    root = insert(root, 0)
    root = insert(root, 6)
    root = insert(root, 11)
    root = insert(root, -1)
    root = insert(root, 1)
    root = insert(root, 2)

    print("Preorder traversal of the "
          "constructed AVL tree is")
    pre_order(root)

    root = delete_node(root, 10)

    print("\nPreorder traversal after"
          " deletion of 10")
    pre_order(root)
C#
using System;

class Node {
    public int key;
    public Node left;
    public Node right;
    public int height;

    public Node(int k) {
        key = k;
        left = null;
        right = null;
        height = 1;
    }
}

class Program {
    static int height(Node N) {
        if (N == null) return 0;
        return N.height;
    }

    static Node rightRotate(Node y) {
        Node x = y.left;
        Node T2 = x.right;

        // Perform rotation
        x.right = y;
        y.left = T2;

        // Update heights
        y.height = Math.Max(height(y.left), height(y.right)) + 1;
        x.height = Math.Max(height(x.left), height(x.right)) + 1;

        // Return new root
        return x;
    }

    static Node leftRotate(Node x) {
        Node y = x.right;
        Node T2 = y.left;

        // Perform rotation
        y.left = x;
        x.right = T2;

        // Update heights
        x.height = Math.Max(height(x.left), height(x.right)) + 1;
        y.height = Math.Max(height(y.left), height(y.right)) + 1;

        // Return new root
        return y;
    }

    static int getBalance(Node N) {
        if (N == null) return 0;
        return height(N.left) - height(N.right);
    }

    static Node Insert(Node node, int key) {
        // 1. Perform the normal BST insertion
        if (node == null) return new Node(key);

        if (key < node.key) {
            node.left = Insert(node.left, key);
        } else if (key > node.key) {
            node.right = Insert(node.right, key);
        } else { // Duplicate keys not allowed
            return node;
        }

        // 2. Update height of this ancestor node
        node.height = Math.Max(height(node.left), height(node.right)) + 1;

        // 3. Get the balance factor of this node
        // to check whether this node became unbalanced
        int balance = getBalance(node);

        // If this node becomes unbalanced, then there are 4 cases

        // Left Left Case
        if (balance > 1 && key < node.left.key) {
            return rightRotate(node);
        }

        // Right Right Case
        if (balance < -1 && key > node.right.key) {
            return leftRotate(node);
        }

        // Left Right Case
        if (balance > 1 && key > node.left.key) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // Right Left Case
        if (balance < -1 && key < node.right.key) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    static Node minValueNode(Node node) {
        Node current = node;

        // loop down to find the leftmost leaf
        while (current.left != null) {
            current = current.left;
        }
        return current;
    }

    static Node DeleteNode(Node root, int key) {
      
        // STEP 1: PERFORM STANDARD BST DELETE
        if (root == null) return root;

        // If the key to be deleted is smaller
        // than the root's key, then it lies in
        // left subtree
        if (key < root.key) {
            root.left = DeleteNode(root.left, key);
        } else if (key > root.key) {
            root.right = DeleteNode(root.right, key);
        } else { // if key is same as root's key
          
            // node with only one child or no child
            if (root.left == null || root.right == null) {
                Node temp = root.left != null ? root.left : root.right;

                // No child case
                if (temp == null) {
                    root = null;
                } else { // One child case
                    root = temp; // Copy the non-empty child
                }
            } else {
              
                // node with two children: Get the inorder successor
                Node temp = minValueNode(root.right);
              
                // Copy the inorder successor's data to this node
                root.key = temp.key;
              
                // Delete the inorder successor
                root.right = DeleteNode(root.right, temp.key);
            }
        }

        // If the tree had only one node then return
        if (root == null) return root;

        // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
        root.height = Math.Max(height(root.left), height(root.right)) + 1;

        // STEP 3: GET THE BALANCE FACTOR OF THIS NODE
        int balance = getBalance(root);

        // If this node becomes unbalanced, then there are 4 cases

        // Left Left Case
        if (balance > 1 && getBalance(root.left) >= 0) {
            return rightRotate(root);
        }

        // Left Right Case
        if (balance > 1 && getBalance(root.left) < 0) {
            root.left = leftRotate(root.left);
            return rightRotate(root);
        }

        // Right Right Case
        if (balance < -1 && getBalance(root.right) <= 0) {
            return leftRotate(root);
        }

        // Right Left Case
        if (balance < -1 && getBalance(root.right) > 0) {
            root.right = rightRotate(root.right);
            return leftRotate(root);
        }

        return root;
    }

    static void PreOrder(Node root) {
        if (root != null) {
            Console.Write(root.key + " ");
            PreOrder(root.left);
            PreOrder(root.right);
        }
    }

    // Driver Code
    public static void Main(string[] args) {
        Node root = null;

        // Constructing tree given in the above figure
        root = Insert(root, 9);
        root = Insert(root, 5);
        root = Insert(root, 10);
        root = Insert(root, 0);
        root = Insert(root, 6);
        root = Insert(root, 11);
        root = Insert(root, -1);
        root = Insert(root, 1);
        root = Insert(root, 2);

        Console.WriteLine("Preorder traversal of the constructed AVL tree is:");
        PreOrder(root);

        root = DeleteNode(root, 10);

        Console.WriteLine("\nPreorder traversal after deletion of 10:");
        PreOrder(root);
    }
}
JavaScript
class Node {
    constructor(key) {
        this.key = key;
        this.left = null;
        this.right = null;
        this.height = 1;
    }
}

function height(N) {
    if (N === null) return 0;
    return N.height;
}

function rightRotate(y) {
    const x = y.left;
    const T2 = x.right;

    // Perform rotation
    x.right = y;
    y.left = T2;

    // Update heights
    y.height = Math.max(height(y.left), height(y.right)) + 1;
    x.height = Math.max(height(x.left), height(x.right)) + 1;

    // Return new root
    return x;
}

function leftRotate(x) {
    const y = x.right;
    const T2 = y.left;

    // Perform rotation
    y.left = x;
    x.right = T2;

    // Update heights
    x.height = Math.max(height(x.left), height(x.right)) + 1;
    y.height = Math.max(height(y.left), height(y.right)) + 1;

    // Return new root
    return y;
}

function getBalance(N) {
    if (N === null) return 0;
    return height(N.left) - height(N.right);
}

function insert(node, key) {
    // 1. Perform the normal BST insertion
    if (node === null) return new Node(key);

    if (key < node.key) {
        node.left = insert(node.left, key);
    } else if (key > node.key) {
        node.right = insert(node.right, key);
    } else { // Duplicate keys not allowed
        return node;
    }

    // 2. Update height of this ancestor node
    node.height = Math.max(height(node.left), height(node.right)) + 1;

    // 3. Get the balance factor of this node
    // to check whether this node became unbalanced
    const balance = getBalance(node);

    // If this node becomes unbalanced, then there are 4 cases

    // Left Left Case
    if (balance > 1 && key < node.left.key) {
        return rightRotate(node);
    }

    // Right Right Case
    if (balance < -1 && key > node.right.key) {
        return leftRotate(node);
    }

    // Left Right Case
    if (balance > 1 && key > node.left.key) {
        node.left = leftRotate(node.left);
        return rightRotate(node);
    }

    // Right Left Case
    if (balance < -1 && key < node.right.key) {
        node.right = rightRotate(node.right);
        return leftRotate(node);
    }

    return node;
}

function minValueNode(node) {
    let current = node;
    // loop down to find the leftmost leaf
    while (current.left !== null) {
        current = current.left;
    }
    return current;
}

function deleteNode(root, key) {

    // STEP 1: PERFORM STANDARD BST DELETE
    if (root === null) return root;

    // If the key to be deleted is smaller
    // than the root's key, then it lies in
    // left subtree
    if (key < root.key) {
        root.left = deleteNode(root.left, key);
        
    } else if (key > root.key) {
        root.right = deleteNode(root.right, key);
    } else { // if key is same as root's key
    
        // node with only one child or no child
        if (root.left === null || root.right === null) {
            const temp = root.left ? root.left : root.right;

            // No child case
            if (temp === null) {
                root = null;
            } else { // One child case
                root = temp; // Copy the contents of the non-empty child
            }
        } else {
        
            // node with two children: Get the inorder successor
            const temp = minValueNode(root.right);
            
            // Copy the inorder successor's data to this node
            root.key = temp.key;
            
            // Delete the inorder successor
            root.right = deleteNode(root.right, temp.key);
        }
    }

    // If the tree had only one node then return
    if (root === null) return root;

    // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
    root.height = Math.max(height(root.left), height(root.right)) + 1;

    // STEP 3: GET THE BALANCE FACTOR OF THIS NODE
    const balance = getBalance(root);

    // If this node becomes unbalanced, then there are 4 cases

    // Left Left Case
    if (balance > 1 && getBalance(root.left) >= 0) {
        return rightRotate(root);
    }

    // Left Right Case
    if (balance > 1 && getBalance(root.left) < 0) {
        root.left = leftRotate(root.left);
        return rightRotate(root);
    }

    // Right Right Case
    if (balance < -1 && getBalance(root.right) <= 0) {
        return leftRotate(root);
    }

    // Right Left Case
    if (balance < -1 && getBalance(root.right) > 0) {
        root.right = rightRotate(root.right);
        return leftRotate(root);
    }

    return root;
}

function preOrder(root) {
    if (root !== null) {
        console.log(root.key + " ");
        preOrder(root.left);
        preOrder(root.right);
    }
}

// Driver Code
let root = null;

// Constructing tree given in the above figure
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);

console.log("Preorder traversal of the constructed AVL tree is:");
preOrder(root);

root = deleteNode(root, 10);

console.log("\nPreorder traversal after deletion of 10:");
preOrder(root);

Output
Preorder traversal of the constructed AVL tree is 
9 1 0 -1 5 2 6 10 11 
Preorder traversal after deletion of 10 
1 0 -1 9 5 2 6 11 

Time Complexity: The rotation operations (left and right rotate) take constant time as only few pointers are being changed there. Updating the height and getting the balance factor also take constant time. So the time complexity of AVL delete remains same as BST delete which is O(h) where h is height of the tree. Since AVL tree is balanced, the height is O(log n). So time complexity of AVL delete is O(log n). 
Auxiliary Space: O(log n) for recursion call stack as we have written a recursive method to delete

Summary of Deletion in AVL Trees:

  • Deletion in AVL trees is similar to deletion in a Binary Search Tree (BST), but followed by rebalancing operations.
  • After deleting a node, the balance factor of ancestor nodes may change.
  • If the balance factor goes outside the range of -1 to +1, rotations (LL, RR, LR, RL) are required to restore balance.
  • The type of rotation depends on the balance factors of the affected node and its children.
  • Time complexity of deletion remains O(log n) due to the balanced nature of the tree.

Next Article

Similar Reads