We have discussed Insertion of AVL Tree. In this post, we will follow a similar approach for deletion.
Steps to follow for deletion.
To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Following are two basic operations that can be performed to re-balance a BST without violating the BST property (keys(left) < key(root) < keys(right)).
- Left Rotation
- Right Rotation
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)Example:
C++
#include <bits/stdc++.h>
using namespace std;
// An AVL tree node
class Node {
public:
int key;
Node *left;
Node *right;
int height;
Node(int k) {
key = k;
left = nullptr;
right = nullptr;
height = 1;
}
};
// A utility function to get the height
// of the tree
int height(Node *N) {
if (N == nullptr)
return 0;
return N->height;
}
// A utility function to right rotate
// subtree rooted with y
Node *rightRotate(Node *y) {
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = 1 + max(height(y->left),
height(y->right));
x->height = 1 + (height(x->left),
height(x->right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
Node *leftRotate(Node *x) {
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = 1 + max(height(x->left),
height(x->right));
y->height = 1 + max(height(y->left),
height(y->right));
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(Node *N) {
if (N == nullptr)
return 0;
return height(N->left) -
height(N->right);
}
Node* insert(Node* node, int key) {
// 1. Perform the normal BST rotation
if (node == nullptr)
return new Node(key);
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys not allowed
return node;
// 2. Update height of this ancestor node
node->height = 1 + max(height(node->left),
height(node->right));
// 3. Get the balance factor of this
// ancestor node to check whether this
// node became unbalanced
int balance = getBalance(node);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
// return the (unchanged) node pointer
return node;
}
// Given a non-empty binary search tree,
// return the node with minimum key value
// found in that tree. Note that the entire
// tree does not need to be searched.
Node * minValueNode(Node* node) {
Node* current = node;
// loop down to find the leftmost leaf
while (current->left != nullptr)
current = current->left;
return current;
}
// Recursive function to delete a node with
// given key from subtree with given root.
// It returns root of the modified subtree.
Node* deleteNode(Node* root, int key) {
// STEP 1: PERFORM STANDARD BST DELETE
if (root == nullptr)
return root;
// If the key to be deleted is smaller
// than the root's key, then it lies in
// left subtree
if (key < root->key)
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater
// than the root's key, then it lies in
// right subtree
else if (key > root->key)
root->right = deleteNode(root->right, key);
// if key is same as root's key, then
// this is the node to be deleted
else {
// node with only one child or no child
if ((root->left == nullptr) ||
(root->right == nullptr)) {
Node *temp = root->left ?
root->left : root->right;
// No child case
if (temp == nullptr) {
temp = root;
root = nullptr;
} else // One child case
*root = *temp; // Copy the contents of
// the non-empty child
free(temp);
} else {
// node with two children: Get the
// inorder successor (smallest in
// the right subtree)
Node* temp = minValueNode(root->right);
// Copy the inorder successor's
// data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right, temp->key);
}
}
// If the tree had only one node then return
if (root == nullptr)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left),
height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF THIS
// NODE (to check whether this node
// became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 &&
getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 &&
getBalance(root->left) < 0) {
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 &&
getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 &&
getBalance(root->right) > 0) {
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder
// traversal of the tree.
void preOrder(Node *root) {
if (root != nullptr) {
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Driver Code
int main() {
Node *root = nullptr;
// Constructing tree given in the
// above figure
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);
cout << "Preorder traversal of the "
"constructed AVL tree is \n";
preOrder(root);
root = deleteNode(root, 10);
cout << "\nPreorder traversal after"
" deletion of 10 \n";
preOrder(root);
return 0;
}
C
// C program to delete a node from AVL Tree
#include<stdio.h>
#include<stdlib.h>
// An AVL tree node
struct Node
{
int key;
struct Node *left;
struct Node *right;
int height;
};
// A utility function to get maximum of two integers
int max(int a, int b);
// A utility function to get height of the tree
int height(struct Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct Node* newNode(int key)
{
struct Node* node = (struct Node*)
malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
return(node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
struct Node *x = y->left;
struct Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
struct Node *y = x->right;
struct Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
struct Node* insert(struct Node* node, int key)
{
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys not allowed
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
/* Given a non-empty binary search tree, return the
node with minimum key value found in that tree.
Note that the entire tree does not need to be
searched. */
struct Node * minValueNode(struct Node* node)
{
struct Node* current = node;
/* loop down to find the leftmost leaf */
while (current->left != NULL)
current = current->left;
return current;
}
// Recursive function to delete a node with given key
// from subtree with given root. It returns root of
// the modified subtree.
struct Node* deleteNode(struct Node* root, int key)
{
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL)
return root;
// If the key to be deleted is smaller than the
// root's key, then it lies in left subtree
if ( key < root->key )
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater than the
// root's key, then it lies in right subtree
else if( key > root->key )
root->right = deleteNode(root->right, key);
// if key is same as root's key, then This is
// the node to be deleted
else
{
// node with only one child or no child
if( (root->left == NULL) || (root->right == NULL) )
{
struct Node *temp = root->left ? root->left :
root->right;
// No child case
if (temp == NULL)
{
temp = root;
root = NULL;
}
else // One child case
*root = *temp; // Copy the contents of
// the non-empty child
free(temp);
}
else
{
// node with two children: Get the inorder
// successor (smallest in the right subtree)
struct Node* temp = minValueNode(root->right);
// Copy the inorder successor's data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right, temp->key);
}
}
// If the tree had only one node then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left),
height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to
// check whether this node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 && getBalance(root->left) < 0)
{
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 && getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 && getBalance(root->right) > 0)
{
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder traversal of
// the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
if(root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Driver program to test above function*/
int main()
{
struct Node *root = NULL;
/* Constructing tree given in the above figure */
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);
/* The constructed AVL Tree would be
9
/ \
1 10
/ \ \
0 5 11
/ / \
-1 2 6
*/
printf("Preorder traversal of the constructed AVL "
"tree is \n");
preOrder(root);
root = deleteNode(root, 10);
/* The AVL Tree after deletion of 10
1
/ \
0 9
/ / \
-1 5 11
/ \
2 6
*/
printf("\nPreorder traversal after deletion of 10 \n");
preOrder(root);
return 0;
}
Java
class Node {
int key;
Node left, right;
int height;
Node(int k) {
key = k;
left = right = null;
height = 1;
}
}
public class Main {
// A utility function to get the height
// of the tree
static int height(Node N) {
if (N == null)
return 0;
return N.height;
}
// A utility function to right rotate
// subtree rooted with y
static Node rightRotate(Node y) {
Node x = y.left;
Node T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = Math.max(height(y.left),
height(y.right)) + 1;
x.height = Math.max(height(x.left),
height(x.right)) + 1;
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
static Node leftRotate(Node x) {
Node y = x.right;
Node T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = Math.max(height(x.left),
height(x.right)) + 1;
y.height = Math.max(height(y.left),
height(y.right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
static int getBalance(Node N) {
if (N == null)
return 0;
return height(N.left) - height(N.right);
}
static Node insert(Node node, int key) {
// 1. Perform the normal BST insertion
if (node == null)
return new Node(key);
if (key < node.key)
node.left = insert(node.left, key);
else if (key > node.key)
node.right = insert(node.right, key);
else // Duplicate keys not allowed
return node;
// 2. Update height of this ancestor node
node.height = Math.max(height(node.left),
height(node.right)) + 1;
// 3. Get the balance factor of this node
// to check whether this node became
// unbalanced
int balance = getBalance(node);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node.right.key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
// Given a non-empty binary search tree,
// return the node with minimum key value
// found in that tree.
static Node minValueNode(Node node) {
Node current = node;
// loop down to find the leftmost leaf
while (current.left != null)
current = current.left;
return current;
}
// Recursive function to delete a node with
// given key from subtree with given root.
// It returns root of the modified subtree.
static Node deleteNode(Node root, int key) {
// STEP 1: PERFORM STANDARD BST DELETE
if (root == null)
return root;
// If the key to be deleted is smaller
// than the root's key, then it lies in
// left subtree
if (key < root.key)
root.left = deleteNode(root.left, key);
// If the key to be deleted is greater
// than the root's key, then it lies in
// right subtree
else if (key > root.key)
root.right = deleteNode(root.right, key);
// if key is same as root's key, then
// this is the node to be deleted
else {
// node with only one child or no child
if ((root.left == null) ||
(root.right == null)) {
Node temp = root.left != null ?
root.left : root.right;
// No child case
if (temp == null) {
temp = root;
root = null;
} else // One child case
root = temp; // Copy the contents of
// the non-empty child
} else {
// node with two children: Get the
// inorder successor (smallest in
// the right subtree)
Node temp = minValueNode(root.right);
// Copy the inorder successor's
// data to this node
root.key = temp.key;
// Delete the inorder successor
root.right = deleteNode(root.right, temp.key);
}
}
// If the tree had only one node then return
if (root == null)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root.height = Math.max(height(root.left),
height(root.right)) + 1;
// STEP 3: GET THE BALANCE FACTOR OF THIS
// NODE (to check whether this node
// became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && getBalance(root.left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 && getBalance(root.left) < 0) {
root.left = leftRotate(root.left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 && getBalance(root.right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 && getBalance(root.right) > 0) {
root.right = rightRotate(root.right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder
// traversal of the tree.
static void preOrder(Node root) {
if (root != null) {
System.out.print(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver Code
public static void main(String[] args) {
Node root = null;
// Constructing tree given in the
// above figure
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);
System.out.println("Preorder traversal of the "
+ "constructed AVL tree is:");
preOrder(root);
root = deleteNode(root, 10);
System.out.println("\nPreorder traversal after"
+ " deletion of 10:");
preOrder(root);
}
}
Python
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
def height(N):
if N is None:
return 0
return N.height
def right_rotate(y):
x = y.left
T2 = x.right
# Perform rotation
x.right = y
y.left = T2
# Update heights
y.height = max(height(y.left),
height(y.right)) + 1
x.height = max(height(x.left),
height(x.right)) + 1
# Return new root
return x
def left_rotate(x):
y = x.right
T2 = y.left
# Perform rotation
y.left = x
x.right = T2
# Update heights
x.height = max(height(x.left),
height(x.right)) + 1
y.height = max(height(y.left),
height(y.right)) + 1
# Return new root
return y
def get_balance(N):
if N is None:
return 0
return height(N.left) - height(N.right)
def insert(node, key):
# 1. Perform the normal BST insertion
if node is None:
return Node(key)
if key < node.key:
node.left = insert(node.left, key)
elif key > node.key:
node.right = insert(node.right, key)
else: # Duplicate keys not allowed
return node
# 2. Update height of this ancestor node
node.height = max(height(node.left),
height(node.right)) + 1
# 3. Get the balance factor of this node
# to check whether this node became
# unbalanced
balance = get_balance(node)
# If this node becomes unbalanced, then
# there are 4 cases
# Left Left Case
if balance > 1 and key < node.left.key:
return right_rotate(node)
# Right Right Case
if balance < -1 and key > node.right.key:
return left_rotate(node)
# Left Right Case
if balance > 1 and key > node.left.key:
node.left = left_rotate(node.left)
return right_rotate(node)
# Right Left Case
if balance < -1 and key < node.right.key:
node.right = right_rotate(node.right)
return left_rotate(node)
return node
def min_value_node(node):
current = node
# loop down to find the leftmost leaf
while current.left is not None:
current = current.left
return current
def delete_node(root, key):
# STEP 1: PERFORM STANDARD BST DELETE
if root is None:
return root
# If the key to be deleted is smaller
# than the root's key, then it lies in
# left subtree
if key < root.key:
root.left = delete_node(root.left, key)
# If the key to be deleted is greater
# than the root's key, then it lies in
# right subtree
elif key > root.key:
root.right = delete_node(root.right, key)
# if key is same as root's key, then
# this is the node to be deleted
else:
# node with only one child or no child
if root.left is None or root.right is None:
temp = root.left if root.left else root.right
# No child case
if temp is None:
root = None
else: # One child case
root = temp
else:
# node with two children: Get the
# inorder successor (smallest in
# the right subtree)
temp = min_value_node(root.right)
# Copy the inorder successor's
# data to this node
root.key = temp.key
# Delete the inorder successor
root.right = delete_node(root.right, temp.key)
# If the tree had only one node then return
if root is None:
return root
# STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root.height = max(height(root.left),
height(root.right)) + 1
# STEP 3: GET THE BALANCE FACTOR OF THIS
# NODE (to check whether this node
# became unbalanced)
balance = get_balance(root)
# If this node becomes unbalanced, then
# there are 4 cases
# Left Left Case
if balance > 1 and get_balance(root.left) >= 0:
return right_rotate(root)
# Left Right Case
if balance > 1 and get_balance(root.left) < 0:
root.left = left_rotate(root.left)
return right_rotate(root)
# Right Right Case
if balance < -1 and get_balance(root.right) <= 0:
return left_rotate(root)
# Right Left Case
if balance < -1 and get_balance(root.right) > 0:
root.right = right_rotate(root.right)
return left_rotate(root)
return root
def pre_order(root):
if root is not None:
print("{0} ".format(root.key), end="")
pre_order(root.left)
pre_order(root.right)
# Driver Code
if __name__ == "__main__":
root = None
# Constructing tree given in the
# above figure
root = insert(root, 9)
root = insert(root, 5)
root = insert(root, 10)
root = insert(root, 0)
root = insert(root, 6)
root = insert(root, 11)
root = insert(root, -1)
root = insert(root, 1)
root = insert(root, 2)
print("Preorder traversal of the "
"constructed AVL tree is")
pre_order(root)
root = delete_node(root, 10)
print("\nPreorder traversal after"
" deletion of 10")
pre_order(root)
C#
using System;
class Node {
public int key;
public Node left;
public Node right;
public int height;
public Node(int k) {
key = k;
left = null;
right = null;
height = 1;
}
}
class Program {
static int height(Node N) {
if (N == null) return 0;
return N.height;
}
static Node rightRotate(Node y) {
Node x = y.left;
Node T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = Math.Max(height(y.left), height(y.right)) + 1;
x.height = Math.Max(height(x.left), height(x.right)) + 1;
// Return new root
return x;
}
static Node leftRotate(Node x) {
Node y = x.right;
Node T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = Math.Max(height(x.left), height(x.right)) + 1;
y.height = Math.Max(height(y.left), height(y.right)) + 1;
// Return new root
return y;
}
static int getBalance(Node N) {
if (N == null) return 0;
return height(N.left) - height(N.right);
}
static Node Insert(Node node, int key) {
// 1. Perform the normal BST insertion
if (node == null) return new Node(key);
if (key < node.key) {
node.left = Insert(node.left, key);
} else if (key > node.key) {
node.right = Insert(node.right, key);
} else { // Duplicate keys not allowed
return node;
}
// 2. Update height of this ancestor node
node.height = Math.Max(height(node.left), height(node.right)) + 1;
// 3. Get the balance factor of this node
// to check whether this node became unbalanced
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key) {
return rightRotate(node);
}
// Right Right Case
if (balance < -1 && key > node.right.key) {
return leftRotate(node);
}
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
static Node minValueNode(Node node) {
Node current = node;
// loop down to find the leftmost leaf
while (current.left != null) {
current = current.left;
}
return current;
}
static Node DeleteNode(Node root, int key) {
// STEP 1: PERFORM STANDARD BST DELETE
if (root == null) return root;
// If the key to be deleted is smaller
// than the root's key, then it lies in
// left subtree
if (key < root.key) {
root.left = DeleteNode(root.left, key);
} else if (key > root.key) {
root.right = DeleteNode(root.right, key);
} else { // if key is same as root's key
// node with only one child or no child
if (root.left == null || root.right == null) {
Node temp = root.left != null ? root.left : root.right;
// No child case
if (temp == null) {
root = null;
} else { // One child case
root = temp; // Copy the non-empty child
}
} else {
// node with two children: Get the inorder successor
Node temp = minValueNode(root.right);
// Copy the inorder successor's data to this node
root.key = temp.key;
// Delete the inorder successor
root.right = DeleteNode(root.right, temp.key);
}
}
// If the tree had only one node then return
if (root == null) return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root.height = Math.Max(height(root.left), height(root.right)) + 1;
// STEP 3: GET THE BALANCE FACTOR OF THIS NODE
int balance = getBalance(root);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && getBalance(root.left) >= 0) {
return rightRotate(root);
}
// Left Right Case
if (balance > 1 && getBalance(root.left) < 0) {
root.left = leftRotate(root.left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 && getBalance(root.right) <= 0) {
return leftRotate(root);
}
// Right Left Case
if (balance < -1 && getBalance(root.right) > 0) {
root.right = rightRotate(root.right);
return leftRotate(root);
}
return root;
}
static void PreOrder(Node root) {
if (root != null) {
Console.Write(root.key + " ");
PreOrder(root.left);
PreOrder(root.right);
}
}
// Driver Code
public static void Main(string[] args) {
Node root = null;
// Constructing tree given in the above figure
root = Insert(root, 9);
root = Insert(root, 5);
root = Insert(root, 10);
root = Insert(root, 0);
root = Insert(root, 6);
root = Insert(root, 11);
root = Insert(root, -1);
root = Insert(root, 1);
root = Insert(root, 2);
Console.WriteLine("Preorder traversal of the constructed AVL tree is:");
PreOrder(root);
root = DeleteNode(root, 10);
Console.WriteLine("\nPreorder traversal after deletion of 10:");
PreOrder(root);
}
}
JavaScript
class Node {
constructor(key) {
this.key = key;
this.left = null;
this.right = null;
this.height = 1;
}
}
function height(N) {
if (N === null) return 0;
return N.height;
}
function rightRotate(y) {
const x = y.left;
const T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = Math.max(height(y.left), height(y.right)) + 1;
x.height = Math.max(height(x.left), height(x.right)) + 1;
// Return new root
return x;
}
function leftRotate(x) {
const y = x.right;
const T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = Math.max(height(x.left), height(x.right)) + 1;
y.height = Math.max(height(y.left), height(y.right)) + 1;
// Return new root
return y;
}
function getBalance(N) {
if (N === null) return 0;
return height(N.left) - height(N.right);
}
function insert(node, key) {
// 1. Perform the normal BST insertion
if (node === null) return new Node(key);
if (key < node.key) {
node.left = insert(node.left, key);
} else if (key > node.key) {
node.right = insert(node.right, key);
} else { // Duplicate keys not allowed
return node;
}
// 2. Update height of this ancestor node
node.height = Math.max(height(node.left), height(node.right)) + 1;
// 3. Get the balance factor of this node
// to check whether this node became unbalanced
const balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key) {
return rightRotate(node);
}
// Right Right Case
if (balance < -1 && key > node.right.key) {
return leftRotate(node);
}
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
function minValueNode(node) {
let current = node;
// loop down to find the leftmost leaf
while (current.left !== null) {
current = current.left;
}
return current;
}
function deleteNode(root, key) {
// STEP 1: PERFORM STANDARD BST DELETE
if (root === null) return root;
// If the key to be deleted is smaller
// than the root's key, then it lies in
// left subtree
if (key < root.key) {
root.left = deleteNode(root.left, key);
} else if (key > root.key) {
root.right = deleteNode(root.right, key);
} else { // if key is same as root's key
// node with only one child or no child
if (root.left === null || root.right === null) {
const temp = root.left ? root.left : root.right;
// No child case
if (temp === null) {
root = null;
} else { // One child case
root = temp; // Copy the contents of the non-empty child
}
} else {
// node with two children: Get the inorder successor
const temp = minValueNode(root.right);
// Copy the inorder successor's data to this node
root.key = temp.key;
// Delete the inorder successor
root.right = deleteNode(root.right, temp.key);
}
}
// If the tree had only one node then return
if (root === null) return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root.height = Math.max(height(root.left), height(root.right)) + 1;
// STEP 3: GET THE BALANCE FACTOR OF THIS NODE
const balance = getBalance(root);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && getBalance(root.left) >= 0) {
return rightRotate(root);
}
// Left Right Case
if (balance > 1 && getBalance(root.left) < 0) {
root.left = leftRotate(root.left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 && getBalance(root.right) <= 0) {
return leftRotate(root);
}
// Right Left Case
if (balance < -1 && getBalance(root.right) > 0) {
root.right = rightRotate(root.right);
return leftRotate(root);
}
return root;
}
function preOrder(root) {
if (root !== null) {
console.log(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver Code
let root = null;
// Constructing tree given in the above figure
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);
console.log("Preorder traversal of the constructed AVL tree is:");
preOrder(root);
root = deleteNode(root, 10);
console.log("\nPreorder traversal after deletion of 10:");
preOrder(root);
OutputPreorder traversal of the constructed AVL tree is
9 1 0 -1 5 2 6 10 11
Preorder traversal after deletion of 10
1 0 -1 9 5 2 6 11
Time Complexity: The rotation operations (left and right rotate) take constant time as only few pointers are being changed there. Updating the height and getting the balance factor also take constant time. So the time complexity of AVL delete remains same as BST delete which is O(h) where h is height of the tree. Since AVL tree is balanced, the height is O(log n). So time complexity of AVL delete is O(log n).
Auxiliary Space: O(log n) for recursion call stack as we have written a recursive method to delete
Summary of Deletion in AVL Trees:
- Deletion in AVL trees is similar to deletion in a Binary Search Tree (BST), but followed by rebalancing operations.
- After deleting a node, the balance factor of ancestor nodes may change.
- If the balance factor goes outside the range of -1 to +1, rotations (LL, RR, LR, RL) are required to restore balance.
- The type of rotation depends on the balance factors of the affected node and its children.
- Time complexity of deletion remains O(log n) due to the balanced nature of the tree.
Similar Reads
AVL Tree Data Structure An AVL tree defined as a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees for any node cannot be more than one. Balance Factor = left subtree height - right subtree heightFor a Balanced Tree(for every node): -1 ⤠Balance Factor ⤠1Example of an
5 min read
What is AVL Tree | AVL Tree meaning An AVL is a self-balancing Binary Search Tree (BST) where the difference between the heights of left and right subtrees of any node cannot be more than one. KEY POINTSIt is height balanced treeIt is a binary search treeIt is a binary tree in which the height difference between the left subtree and r
2 min read
Insertion in an AVL Tree AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes. Insertion in an AVL Tree follows the same basic rules as in a Binary Search Tree (BST):A new key is placed in its correct position based on BST
15+ min read
Insertion, Searching and Deletion in AVL trees containing a parent node pointer AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes. The insertion and deletion in AVL trees have been discussed in the previous article. In this article, insert, search, and delete operations are
15+ min read
Deletion in an AVL Tree We have discussed Insertion of AVL Tree. In this post, we will follow a similar approach for deletion.Steps to follow for deletion. To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Following are two bas
15+ min read
How is an AVL tree different from a B-tree? AVL Trees: AVL tree is a self-balancing binary search tree in which each node maintain an extra factor which is called balance factor whose value is either -1, 0 or 1. B-Tree: A B-tree is a self - balancing tree data structure that keeps data sorted and allows searches, insertions, and deletions in
1 min read
Practice questions on Height balanced/AVL Tree AVL tree is binary search tree with additional property that difference between height of left sub-tree and right sub-tree of any node canât be more than 1. Here are some key points about AVL trees:If there are n nodes in AVL tree, minimum height of AVL tree is floor(log 2 n). If there are n nodes i
4 min read
AVL with duplicate keys Please refer below post before reading about AVL tree handling of duplicates. How to handle duplicates in Binary Search Tree?This is to augment AVL tree node to store count together with regular fields like key, left and right pointers. Insertion of keys 12, 10, 20, 9, 11, 10, 12, 12 in an empty Bin
15+ min read
Count greater nodes in AVL tree In this article we will see that how to calculate number of elements which are greater than given value in AVL tree. Examples: Input : x = 5 Root of below AVL tree 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 Output : 4 Explanation: there are 4 values which are greater than 5 in AVL tree which are 6, 9, 10
15+ min read
Difference between Binary Search Tree and AVL Tree Binary Search Tree:A binary Search Tree is a node-based binary tree data structure that has the following properties: The left subtree of a node contains only nodes with keys lesser than the nodeâs key.The right subtree of a node contains only nodes with keys greater than the nodeâs key.The left and
2 min read