Count Palindromic Substrings in a Binary String
Last Updated :
11 Nov, 2023
Given a binary string S i.e. which consists only of 0's and 1's. Calculate the number of substrings of S which are palindromes. String S contains at most two 1's.
Examples:
Input: S = "011"
Output: 4
Explanation: "0", "1", "1" and "11" are the palindromic substrings.
Input: S = "0"
Output: 1
Explanation: "0" is the only palindromic substring.
Approach: This can be solved with the following idea:
Using some mathematical observation can find out number of possible palindrome substring of size 2. Rest of all size, we can find out by reducing indexes from left and right side. For more clarification, see steps.
Below are the steps to solve the problem:
- Iterate in for loop from 0 to N - 1.
- Checking whether adjacent characters are equal or not and adding in the count.
- Again iterate in the loop, and look for the following conditions:
- Start reducing the index from left and if s[i - 1]== '0', we can decrement l by 1.
- After that, iterate from right and if s[i + 1] == '0', we can increment r by 1.
- Update ans += min(abs(l - i), abs(r - i)).
- And if S[ i - 1] == '1', we can increment total count of palindrome by 1.
Below is the implementation of the code:
C++
// C++ code for the above approach:
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
// Function to count number of plaindrome
long long countPalindrome(string S)
{
// Size of string
int N = S.size();
long long ans = 0, x = 0;
for (int i = 0; i < N; i++) {
x++;
// If adjacent character are same
if (i + 1 < N && S[i] == S[i + 1])
continue;
// Count total number of possibility
ans += (x * (x + 1)) / 2;
x = 0;
}
int last = -1;
for (int i = 0; i < N; i++) {
if (S[i] == '1') {
int l = i;
int r = i;
// Start iterating from right side
while (l - 1 >= 0 && S[l - 1] == '0')
l--;
// Start iterating from left side
while (r + 1 < N && S[r + 1] == '0')
r++;
ans += min(abs(l - i), abs(r - i));
if (last == -1) {
last = i;
}
else {
// Add the min value
ans += min(last, N - i - 1);
if (S[i - 1] != '1') {
ans++;
}
}
}
}
// Return the total count of
// palindromic substrings
return ans;
}
// Driver code
int main()
{
string s = "01110";
// Function call
cout << countPalindrome(s);
return 0;
}
Java
// Code contributed by Flutterfly
import java.util.*;
class Main {
public static long countPalindrome(String S) {
// Size of string
int N = S.length();
long ans = 0, x = 0;
for (int i = 0; i < N; i++) {
x++;
// If adjacent character are same
if (i + 1 < N && S.charAt(i) == S.charAt(i + 1))
continue;
// Count total number of possibility
ans += (x * (x + 1)) / 2;
x = 0;
}
int last = -1;
for (int i = 0; i < N; i++) {
if (S.charAt(i) == '1') {
int l = i;
int r = i;
// Start iterating from right side
while (l - 1 >= 0 && S.charAt(l - 1) == '0')
l--;
// Start iterating from left side
while (r + 1 < N && S.charAt(r + 1) == '0')
r++;
ans += Math.min(Math.abs(l - i), Math.abs(r - i));
if (last == -1) {
last = i;
} else {
// Add the min value
ans += Math.min(last, N - i - 1);
if (S.charAt(i - 1) != '1') {
ans++;
}
}
}
}
// Return the total count of
// palindromic substrings
return ans;
}
// Driver code
public static void main(String[] args) {
String s = "01110";
//Function call
System.out.println(countPalindrome(s));
}
}
Python
# code contributed by Flutterfly
# Function to count number of palindrome
def countPalindrome(S):
#Size of string
N = len(S)
ans = 0
x = 0
for i in range(N):
x += 1
#If adjacent character are same
if i + 1 < N and S[i] == S[i + 1]:
continue
#Count total number of possibility
ans += (x * (x + 1)) // 2
x = 0
last = -1
for i in range(N):
if S[i] == '1':
l = i
r = i
#Start iterating from right side
while l - 1 >= 0 and S[l - 1] == '0':
l -= 1
#Start iterating from left side
while r + 1 < N and S[r + 1] == '0':
r += 1
ans += min(abs(l - i), abs(r - i))
if last == -1:
last = i
else:
#Add the min value
ans += min(last, N - i - 1)
if S[i - 1] != '1':
ans += 1
#Return the total count of palindromic substrings
return ans
#Driver code
s = "01110"
#Function call
print(countPalindrome(s))
C#
// Code contributed by Flutterfly
using System;
public class Program
{
// Function to count number of plaindrome
public static long CountPalindrome(string S)
{
// Size of string
int N = S.Length;
long ans = 0, x = 0;
for (int i = 0; i < N; i++)
{
x++;
// If adjacent character are same
if (i + 1 < N && S[i] == S[i + 1])
continue;
// Count total number of possibility
ans += (x * (x + 1)) / 2;
x = 0;
}
int last = -1;
for (int i = 0; i < N; i++)
{
if (S[i] == '1')
{
int l = i;
int r = i;
// Start iterating from right side
while (l - 1 >= 0 && S[l - 1] == '0')
l--;
// Start iterating from left side
while (r + 1 < N && S[r + 1] == '0')
r++;
ans += Math.Min(Math.Abs(l - i), Math.Abs(r - i));
if (last == -1)
{
last = i;
}
else
{
// Add the min value
ans += Math.Min(last, N - i - 1);
if (S[i - 1] != '1')
{
ans++;
}
}
}
}
// Return the total count of
// palindromic substrings
return ans;
}
//Driver code
public static void Main()
{
string s = "01110";
// Function call
Console.WriteLine(CountPalindrome(s));
}
}
JavaScript
// JavaScript code for the above approach:
// Function to count number of plaindrome
function countPalindrome(S) {
// Size of string
const N = S.length;
let ans = 0;
let x = 0;
for (let i = 0; i < N; i++) {
x++;
// If adjacent character are same
if (i + 1 < N && S[i] === S[i + 1])
continue;
// Count total number of possibility
ans += (x * (x + 1)) / 2;
x = 0;
}
let last = -1;
for (let i = 0; i < N; i++) {
if (S[i] === '1') {
let l = i;
let r = i;
// Start iterating from right side
while (l - 1 >= 0 && S[l - 1] === '0')
l--;
// Start iterating from left side
while (r + 1 < N && S[r + 1] === '0')
r++;
ans += Math.min(Math.abs(l - i), Math.abs(r - i));
if (last === -1) {
last = i;
} else {
// Add the min value
ans += Math.min(last, N - i - 1);
if (S[i - 1] !== '1') {
ans++;
}
}
}
}
// Return the total count of
// palindromic substrings
return ans;
}
// Driver code
const S = "01110";
// Function call
console.log(countPalindrome(S));
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Count of Palindromic substrings in an Index range Given a string str of small alphabetic characters other than this we will be given many substrings of this string in form of index tuples. We need to find out the count of the palindromic substrings in given substring range. Examples: Input : String str = "xyaabax" Range1 = (3, 5) Range2 = (2, 3) Ou
11 min read
Count substrings of a given string whose anagram is a palindrome Given a string S of length N containing only lowercase alphabets, the task is to print the count of substrings of the given string whose anagram is palindromic. Examples: Input: S = "aaaa"Output: 10Explanation:Possible substrings are {"a", "a", "a", "a", "aa", "aa", "aa", "aaa", "aaa", "aaaa"}. Sinc
10 min read
Count All Palindromic Subsequence in a given String Given a string s of length n, the task is to count number of palindromic subsequence (need not necessarily be distinct) present in the string s.Example: Input: s = "abcd"Output: 4Explanation: Palindromic subsequence are : "a" ,"b", "c" ,"d"Input: s = "aab"Output: 4Explanation: palindromic subsequenc
15+ min read
Counting even decimal value substrings in a binary string Given a binary string of size N. Count all substring that have even decimal value considering binary to decimal conversion from left to right (For example a substring "1011" is treated as 13) Examples : Input : 101Output : 2Explanation : Substring are : 1, 10, 101, 0, 01, 1 In decimal form : 1, 1, 3
9 min read
Count all palindromic Substrings for each character in a given String Given a string S of length n, for each character S[i], the task is to find the number of palindromic substrings of length K such that no substring should contain S[i], the task is to return an array A of length n, where A[i] is the count of palindromic substrings of length K which does not include t
9 min read
Count of Reverse Bitonic Substrings in a given String Given a string S, the task is to count the number of Reverse Bitonic Substrings in the given string. Reverse bitonic substring: A string in which the ASCII values of the characters of the string follow any of the following patterns: Strictly IncreasingStrictly decreasingDecreasing and then increasin
8 min read