Count pairs formed by distinct element sub-arrays
Last Updated :
01 Jul, 2022
Given an array, count number of pairs that can be formed from all possible contiguous sub-arrays containing distinct numbers. The array contains positive numbers between 0 to n-1 where n is the size of the array.
Examples:
Input: [1, 4, 2, 4, 3, 2]
Output: 8
The subarrays with distinct elements
are [1, 4, 2], [2, 4, 3] and [4, 3, 2].
There are 8 pairs that can be formed
from above array.
(1, 4), (1, 2), (4, 2), (2, 4), (2, 3),
(4, 3), (4, 2), (3, 2)
Input: [1, 2, 2, 3]
Output: 2
There are 2 pairs that can be formed
from above array.
(1, 2), (2, 3)
The idea is to use Sliding Window for the given array. Let us use a window covering from index left to index right and an Boolean array visited to mark elements in current window. The window invariant is that all elements inside the window are distinct. We keep on expanding the window to the right and if a duplicate is found, we shrink the window from left till all elements are distinct again. We update the count of pairs in current window along the way. An observation showed that in an expanding window, number of pairs can be incremented by value equal to window size - 1.
For example,
Expanding Window Count
[1] Count = 0
[1, 2] Count += 1 pair
i.e. (1, 2)
[1, 2, 3] Count += 2 pairs
i.e. (1, 3) and (2, 3)
[1, 2, 3, 4] Count += 3 pairs
i.e. (1, 4), (2, 4)
and (3, 4)
So, total Count for above window of size 4 containing distinct elements is 6. Nothing need to be done when the window is shrinking.
Below is the implementation of the
C++
// C++ program to count number of distinct pairs
// that can be formed from all possible contiguous
// sub-arrays containing distinct numbers
#include <bits/stdc++.h>
using namespace std;
int countPairs(int arr[], int n)
{
// initialize number of pairs to zero
int count = 0;
//Left and right indexes of current window
int right = 0, left = 0;
// Boolean array visited to mark elements in
// current window. Initialized as false
vector<bool> visited(n, false);
// While right boundary of current window
// doesn't cross right end
while (right < n)
{
// If current window contains all distinct
// elements, widen the window toward right
while (right < n && !visited[arr[right]])
{
count += (right - left);
visited[arr[right]] = true;
right++;
}
// If duplicate is found in current window,
// then reduce the window from left
while (left < right && (right != n &&
visited[arr[right]]))
{
visited[arr[left]] = false;
left++;
}
}
return count;
}
// Driver code
int main()
{
int arr[] = {1, 4, 2, 4, 3, 2};
int n = sizeof arr / sizeof arr[0];
cout << countPairs(arr, n);
return 0;
}
Java
// Java program to count number of distinct pairs
// that can be formed from all possible contiguous
// sub-arrays containing distinct numbers
class GFG
{
static int countPairs(int arr[], int n)
{
// initialize number of pairs to zero
int count = 0;
//Left and right indexes of current window
int right = 0, left = 0;
// Boolean array visited to mark elements in
// current window. Initialized as false
boolean visited[] = new boolean[n];
for(int i = 0; i < n; i++)
visited[i] = false;
// While right boundary of current window
// doesn't cross right end
while (right < n)
{
// If current window contains all distinct
// elements, widen the window toward right
while (right < n && !visited[arr[right]])
{
count += (right - left);
visited[arr[right]] = true;
right++;
}
// If duplicate is found in current window,
// then reduce the window from left
while (left < right && (right != n &&
visited[arr[right]]))
{
visited[arr[left]] = false;
left++;
}
}
return count;
}
// Driver code
public static void main(String args[])
{
int arr[] = {1, 4, 2, 4, 3, 2};
int n = arr.length;
System.out.println( countPairs(arr, n));
}
}
// This code is contributed by Arnab Kundu
Python3
# Python 3 program to count number of distinct
# pairs that can be formed from all possible
# contiguous sub-arrays containing distinct numbers
def countPairs(arr, n):
# initialize number of pairs to zero
count = 0
# Left and right indexes of
# current window
right = 0
left = 0
# Boolean array visited to mark elements
# in current window. Initialized as false
visited = [False for i in range(n)]
# While right boundary of current
# window doesn't cross right end
while (right < n):
# If current window contains all distinct
# elements, widen the window toward right
while (right < n and
visited[arr[right]] == False):
count += (right - left)
visited[arr[right]] = True
right += 1
# If duplicate is found in current window,
# then reduce the window from left
while (left < right and (right != n and
visited[arr[right]] == True)):
visited[arr[left]] = False
left += 1
return count
# Driver code
if __name__ == '__main__':
arr = [1, 4, 2, 4, 3, 2]
n = len(arr)
print(countPairs(arr, n))
# This code is contributed by
# Sanjit_Prasad
C#
// C# program to count number of distinct pairs
// that can be formed from all possible contiguous
// sub-arrays containing distinct numbers
using System;
class GFG
{
static int countPairs(int []arr, int n)
{
// initialize number of pairs to zero
int count = 0;
//Left and right indexes of current window
int right = 0, left = 0;
// Boolean array visited to mark elements in
// current window. Initialized as false
bool [] visited = new bool[n];
for(int i = 0; i < n; i++)
visited[i] = false;
// While right boundary of current window
// doesn't cross right end
while (right < n)
{
// If current window contains all distinct
// elements, widen the window toward right
while (right < n && !visited[arr[right]])
{
count += (right - left);
visited[arr[right]] = true;
right++;
}
// If duplicate is found in current window,
// then reduce the window from left
while (left < right && (right != n &&
visited[arr[right]]))
{
visited[arr[left]] = false;
left++;
}
}
return count;
}
// Driver code
public static void Main()
{
int [] arr = {1, 4, 2, 4, 3, 2};
int n = arr.Length;
Console.Write( countPairs(arr, n));
}
}
// This code is contributed by mohit kumar 29
JavaScript
<script>
// Javascript program to count number of distinct pairs
// that can be formed from all possible contiguous
// sub-arrays containing distinct numbers
function countPairs(arr,n)
{
// initialize number of pairs to zero
let count = 0;
//Left and right indexes of current window
let right = 0, left = 0;
// Boolean array visited to mark elements in
// current window. Initialized as false
let visited = new Array(n);
for(let i = 0; i < n; i++)
visited[i] = false;
// While right boundary of current window
// doesn't cross right end
while (right < n)
{
// If current window contains all distinct
// elements, widen the window toward right
while (right < n && !visited[arr[right]])
{
count += (right - left);
visited[arr[right]] = true;
right++;
}
// If duplicate is found in current window,
// then reduce the window from left
while (left < right && (right != n &&
visited[arr[right]]))
{
visited[arr[left]] = false;
left++;
}
}
return count;
}
// Driver code
let arr=[1, 4, 2, 4, 3, 2];
let n = arr.length;
document.write( countPairs(arr, n));
// This code is contributed by unknown2108
</script>
Time Complexity: The complexity might look O(n^2) as 2 while loop are involved but note that left and right index are changing from 0 to N-1. So overall complexity is O(n + n) = O(n). Auxiliary space required in above solution is O(n) as we are using visited array to mark elements of the current window.
Similar Reads
Count Distinct ( Unique ) elements in an array Given an array arr[] of length N, The task is to count all distinct elements in arr[]. Examples: Input: arr[] = {10, 20, 20, 10, 30, 10}Output: 3Explanation: There are three distinct elements 10, 20, and 30. Input: arr[] = {10, 20, 20, 10, 20}Output: 2 Naïve Approach: Create a count variable and ru
15 min read
Count distinct elements in an array in Python Given an unsorted array, count all distinct elements in it. Examples: Input : arr[] = {10, 20, 20, 10, 30, 10} Output : 3 Input : arr[] = {10, 20, 20, 10, 20} Output : 2 We have existing solution for this article. We can solve this problem in Python3 using Counter method. Approach#1: Using Set() Thi
2 min read
Count subarrays having total distinct elements same as original array Given an array of n integers. Count the total number of sub-arrays having total distinct elements, the same as that of the total distinct elements of the original array. Examples: Input : arr[] = {2, 1, 3, 2, 3} Output : 5 Total distinct elements in array is 3 Total sub-arrays that satisfy the condi
11 min read
Counting Distinct Arrays by Removal and Concatenation of Elements Given an array arr[] of length N, the task is to create an array res[] of length N where each element res[i] represents the count of distinct arrays obtained by applying the below operation on prefix arr[1, i] for (1 <= i <= N): Select three distinct indices let say i1, i2 and i3 such that (1
15 min read
Count Subarrays With At Most K Distinct Elements Given an array arr[] of integers and a positive integer k, the goal is to count the total number of subarrays that contain at most k distinct (unique) elements.Examples:Input: arr[] = [1, 2, 2, 3], k = 2 Output: 9Explanation: Subarrays with at most 2 distinct elements are: [1], [2], [2], [3], [1, 2]
9 min read