Check if an array can be split into subarrays with GCD exceeding K
Last Updated :
20 Apr, 2021
Given an array arr[] of N integers and a positive integer K, the task is to check if it is possible to split this array into distinct contiguous subarrays such that the Greatest Common Divisor of all elements of each subarray is greater than K.
Note: Each array element can be a part of exactly one subarray.
Examples:
Input: arr[] = {3, 2, 4, 4, 8}, K = 1
Output: Yes
Explanation:
One valid split is [3], [2, 4], [4, 8] with GCD 3, 2 and 4 respectively.
Another Valid Split is [3], [2, 4], [4], [8] with GCD 3, 2, 4 and 8 respectively.
Therefore, the given array can be split into subarrays having GCD > K.
Input: arr[] = {2, 4, 6, 1, 8, 16}, K = 3
Output: No
Approach: This problem can be solved using the following observations:
- If any array element is found to be less than or equal to K, then the answer is always "No". This is because the subarray that contains this number will always have GCD less than or equal to K.
- If no array element is found to be less than or equal to K, then it is always possible to divide the entire array into N subarrays each of size at least 1 whose GCD is always greater than K.
Therefore, from the above observations, the idea is to traverse the given array and check that if there exists any element in the array which is less than or equal to K. If found to be true, then print "No". Otherwise print "Yes".
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <iostream>
using namespace std;
// Function to check if it is possible
// to split an array into subarrays
// having GCD at least K
string canSplitArray(int arr[], int n,
int k)
{
// Iterate over the array arr[]
for (int i = 0; i < n; i++) {
// If the current element
// is less than or equal to k
if (arr[i] <= k) {
return "No";
}
}
// If no array element is found
// to be less than or equal to k
return "Yes";
}
// Driver Code
int main()
{
// Given array arr[]
int arr[] = { 2, 4, 6, 1, 8, 16 };
int N = sizeof arr / sizeof arr[0];
// Given K
int K = 3;
// Function Call
cout << canSplitArray(arr, N, K);
}
Java
// Java program for the above approach
import java.io.*;
class GFG{
// Function to check if it is possible
// to split an array into subarrays
// having GCD at least K
static String canSplitArray(int arr[],
int n, int k)
{
// Iterate over the array arr[]
for(int i = 0; i < n; i++)
{
// If the current element
// is less than or equal to k
if (arr[i] <= k)
{
return "No";
}
}
// If no array element is found
// to be less than or equal to k
return "Yes";
}
// Driver code
public static void main (String[] args)
{
// Given array arr[]
int arr[] = { 2, 4, 6, 1, 8, 16 };
// Length of the array
int N = arr.length;
// Given K
int K = 3;
// Function call
System.out.println(canSplitArray(arr, N, K));
}
}
// This code is contributed by jana_sayantan
Python3
# Python3 program for the above approach
# Function to check if it is possible
# to split an array into subarrays
# having GCD at least K
def canSplitArray(arr, n, k):
# Iterate over the array arr[]
for i in range(n):
# If the current element
# is less than or equal to k
if (arr[i] <= k):
return "No"
# If no array element is found
# to be less than or equal to k
return "Yes"
# Driver Code
if __name__ == '__main__':
# Given array arr[]
arr = [ 2, 4, 6, 1, 8, 16 ]
N = len(arr)
# Given K
K = 3
# Function call
print(canSplitArray(arr, N, K))
# This code is contributed by mohit kumar 29
C#
// C# program for the above approach
using System;
class GFG{
// Function to check if it is possible
// to split an array into subarrays
// having GCD at least K
static String canSplitArray(int []arr,
int n, int k)
{
// Iterate over the array []arr
for(int i = 0; i < n; i++)
{
// If the current element
// is less than or equal to k
if (arr[i] <= k)
{
return "No";
}
}
// If no array element is found
// to be less than or equal to k
return "Yes";
}
// Driver code
public static void Main(String[] args)
{
// Given array []arr
int []arr = { 2, 4, 6, 1, 8, 16 };
// Length of the array
int N = arr.Length;
// Given K
int K = 3;
// Function call
Console.WriteLine(canSplitArray(arr, N, K));
}
}
// This code is contributed by Amit Katiyar
JavaScript
<script>
// JavaScript implementation of the above approach
// Function to check if it is possible
// to split an array into subarrays
// having GCD at least K
function canSplitArray(arr, n, k)
{
// Iterate over the array arr[]
for(let i = 0; i < n; i++)
{
// If the current element
// is less than or equal to k
if (arr[i] <= k)
{
return "No";
}
}
// If no array element is found
// to be less than or equal to k
return "Yes";
}
// Driver code
// Given array arr[]
let arr = [ 2, 4, 6, 1, 8, 16 ];
// Length of the array
let N = arr.length;
// Given K
let K = 3;
// Function call
document.write(canSplitArray(arr, N, K));
// This code is contributed by code_hunt.
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Check if a sorted array can be divided in pairs whose sum is k Given a sorted array of integers and a number k, write a function that returns true if given array can be divided into pairs such that sum of every pair k.Expected time complexity O(n) and extra space O(1). This problem is a variation of below problem, but has a different interesting solution that r
11 min read
Check if Array has at least M non-overlapping Subarray with gcd G Given an array A[] and M, the task is to check whether there exist M non-overlapping subarrays(non-empty) of A for which the average of the GCD of those subarrays equals G where G denotes the gcd of all the numbers in the array A. Examples: Input: A[] = {1, 2, 3, 4, 5}, M = 3Output: Yes?Explanation:
6 min read
Count ways to split array into two subarrays with equal GCD Given an array, arr[] of size N, the task is to count the number of ways to split given array elements into two subarrays such that GCD of both the subarrays are equal. Examples: Input: arr[] = {8, 4, 4, 8, 12} Output: 2 Explanation: Possible ways to split the array two groups of equal GCD are: { {{
8 min read
Generate an array with product of all subarrays of length exceeding one divisible by K Given two positive integers N and K, the task is to generate an array of length N such that the product of every subarray of length greater than 1 must be divisible by K and the maximum element of the array must be less than K. If no such array is possible, then print -1. Examples: Input: N = 3, K =
6 min read
Check if a Subarray exists with sums as a multiple of k Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer. Note: The length of the array won't exceed 10,000. You may assume th
8 min read