Check if a Binary Tree contains duplicate subtrees of size 2 or more Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Try it on GfG Practice Given a Binary Tree, the task is to check whether the Binary tree contains a duplicate sub-tree of size 2 or more. Note: Two same leaf nodes are not considered as the subtree as the size of a leaf node is one.Example:Input: Output: TrueExplanation: Table of Content[Naive Approach] Generating All Subtrees - O(n^2) Time and O(n) Space[Expected Approach] Using Hash Set - O(n) Time and O(n) Space[Naive Approach] Generating All Subtrees - O(n^2) Time and O(n) SpaceThe idea is to generate all subtrees (of size greater than 1) of the binary tree and store their Serialized Form in an array or hash map. Then iterate through the array/map to check for duplicate subtrees. C++ // C++ program to find if there is a duplicate // sub-tree of size 2 or more. #include <bits/stdc++.h> using namespace std; class Node { public: char data; Node *left, *right; Node (char x) { data = x; left = nullptr; right = nullptr; } }; // Function which generates all the subtrees of size>2 // and store its serialized form in map. string dupSubRecur(Node *root, unordered_map<string, int> &map) { // For null nodes, if (root == nullptr) return "N"; // For leaf nodes, return its value in string. if (root->left==nullptr && root->right==nullptr) { return to_string(root->data); } // Process the left and right subtree. string left = dupSubRecur(root->left, map); string right = dupSubRecur(root->right, map); // Generate the serialized form. string curr = ""; curr += to_string(root->data); curr += '*'; curr += left; curr += '*'; curr += right; // Store the subtree in map. map[curr]++; return curr; } int dupSub(Node *root) { unordered_map<string,int> map; // Generate all the subtrees. dupSubRecur(root, map); // Check for all subtrees. for (auto p: map) { // If subtree is duplicate. if (p.second>1) { return 1; } } return 0; } int main() { // A // / \ // B C // / \ \ // D E B // / \ // D E Node* root = new Node('A'); root->left = new Node('B'); root->right = new Node('C'); root->left->left = new Node('D'); root->left->right = new Node('E'); root->right->right = new Node('B'); root->right->right->right = new Node('E'); root->right->right->left = new Node('D'); if (dupSub(root)) { cout << "True" << endl; } else { cout << "False" << endl; } return 0; } Java // Java program to find if there is a duplicate // sub-tree of size 2 or more. import java.util.HashMap; class Node { char data; Node left, right; Node(char x) { data = x; left = null; right = null; } } class GfG { static String dupSubRecur(Node root, HashMap<String, Integer> map) { // For null nodes, if (root == null) return "N"; // For leaf nodes, return its value in string. if (root.left == null && root.right == null) { return String.valueOf(root.data); } // Process the left and right subtree. String left = dupSubRecur(root.left, map); String right = dupSubRecur(root.right, map); // Generate the serialized form. String curr = ""; curr += root.data; curr += '*'; curr += left; curr += '*'; curr += right; // Store the subtree in map. map.put(curr, map.getOrDefault(curr, 0) + 1); return curr; } static int dupSub(Node root) { HashMap<String, Integer> map = new HashMap<>(); // Generate all the subtrees. dupSubRecur(root, map); // Check for all subtrees. for (int val : map.values()) { // If subtree is duplicate. if (val > 1) { return 1; } } return 0; } public static void main(String[] args) { // A // / \ // B C // / \ \ // D E B // / \ // D E Node root = new Node('A'); root.left = new Node('B'); root.right = new Node('C'); root.left.left = new Node('D'); root.left.right = new Node('E'); root.right.right = new Node('B'); root.right.right.left = new Node('D'); root.right.right.right = new Node('E'); if (dupSub(root) == 1) { System.out.println("True"); } else { System.out.println("False"); } } } Python # Python program to find if there is a duplicate # sub-tree of size 2 or more. class Node: def __init__(self, x): self.data = x self.left = None self.right = None def dupSubRecur(root, map): # For null nodes, if root is None: return "N" # For leaf nodes, return its value in string. if root.left is None and root.right is None: return str(root.data) # Process the left and right subtree. left = dupSubRecur(root.left, map) right = dupSubRecur(root.right, map) # Generate the serialized form. curr = "" curr += str(root.data) curr += '*' curr += left curr += '*' curr += right # Store the subtree in map. map[curr] = map.get(curr, 0) + 1 return curr def dupSub(root): map = {} # Generate all the subtrees. dupSubRecur(root, map) # Check for all subtrees. for val in map.values(): # If subtree is duplicate. if val > 1: return 1 return 0 if __name__ == "__main__": # A # / \ # B C # / \ \ # D E B # / \ # D E root = Node('A') root.left = Node('B') root.right = Node('C') root.left.left = Node('D') root.left.right = Node('E') root.right.right = Node('B') root.right.right.left = Node('D') root.right.right.right = Node('E') if dupSub(root) == 1: print("True") else: print("False") C# // C# program to find if there is a duplicate // sub-tree of size 2 or more. using System; using System.Collections.Generic; class Node { public char data; public Node left, right; public Node(char x) { data = x; left = null; right = null; } } class GfG { static string dupSubRecur(Node root, Dictionary<string, int> map) { // For null nodes, if (root == null) return "N"; // For leaf nodes, return its value in string. if (root.left == null && root.right == null) { return root.data.ToString(); } // Process the left and right subtree. string left = dupSubRecur(root.left, map); string right = dupSubRecur(root.right, map); // Generate the serialized form. string curr = ""; curr += root.data; curr += '*'; curr += left; curr += '*'; curr += right; // Store the subtree in map. if (map.ContainsKey(curr)) { map[curr]++; } else { map[curr] = 1; } return curr; } static int dupSub(Node root) { Dictionary<string, int> map = new Dictionary<string, int>(); // Generate all the subtrees. dupSubRecur(root, map); // Check for all subtrees. foreach (int val in map.Values) { // If subtree is duplicate. if (val > 1) { return 1; } } return 0; } static void Main() { // A // / \ // B C // / \ \ // D E B // / \ // D E Node root = new Node('A'); root.left = new Node('B'); root.right = new Node('C'); root.left.left = new Node('D'); root.left.right = new Node('E'); root.right.right = new Node('B'); root.right.right.left = new Node('D'); root.right.right.right = new Node('E'); if (dupSub(root) == 1) { Console.WriteLine("True"); } else { Console.WriteLine("False"); } } } JavaScript // JavaScript program to find if there is a duplicate // sub-tree of size 2 or more. class Node { constructor(x) { this.data = x; this.left = null; this.right = null; } } function dupSubRecur(root, map) { // For null nodes, if (root === null) return "N"; // For leaf nodes, return its value in string. if (root.left === null && root.right === null) { return root.data.toString(); } // Process the left and right subtree. let left = dupSubRecur(root.left, map); let right = dupSubRecur(root.right, map); // Generate the serialized form. let curr = ""; curr += root.data; curr += '*'; curr += left; curr += '*'; curr += right; // Store the subtree in map. map[curr] = (map[curr] || 0) + 1; return curr; } function dupSub(root) { let map = {}; // Generate all the subtrees. dupSubRecur(root, map); // Check for all subtrees. for (let val of Object.values(map)) { // If subtree is duplicate. if (val > 1) { return 1; } } return 0; } // A // / \ // B C // / \ \ // D E B // / \ // D E let root = new Node('A'); root.left = new Node('B'); root.right = new Node('C'); root.left.left = new Node('D'); root.left.right = new Node('E'); root.right.right = new Node('B'); root.right.right.left = new Node('D'); root.right.right.right = new Node('E'); console.log(dupSub(root) === 1 ? "True" : "False"); OutputTrue [Expected Approach] Using Hash Set - O(n) Time and O(n) SpaceThe idea is to use a hash set to store the subtrees in Serialized String Form. For a given subtree of size greater than 1, if its equivalent serialized string already exists, then return true. If all subtrees are unique, return false.Step by step approach:To identify duplicate subtrees efficiently, we only need to check subtrees of size 2 or 3, as any larger duplicate subtree would already contain smaller duplicate subtrees. This reduces the time complexity of concatenating strings to O(1) by focusing only on nodes where both children are either leaf nodes or one is a leaf and the other is null.Use a hash set, say s to track unique subtree structures and an answer variable ans (initially set to false).Define a function dupSubRecur that takes a node and returns a string.If the node is null, return "N".If it's a leaf node, return its value as a string.For internal nodes, first process the left and right subtrees. If either subtree string is empty, return an empty string. Otherwise, concatenate the current node with its left and right subtree strings. If this concatenated string is in the hash set, set ans to true; if not, insert it.Return an empty string for each processed subtree, as upper subtrees don’t need further processing. C++ // C++ program to find if there is a duplicate // sub-tree of size 2 or more. #include <bits/stdc++.h> using namespace std; class Node { public: char data; Node *left, *right; Node (char x) { data = x; left = nullptr; right = nullptr; } }; // Function which checks all the subtree of size 2 or // 3 if they are duplicate. string dupSubRecur(Node *root, unordered_set<string> &s, int &ans) { // For null nodes, if (root == nullptr) return "N"; // For leaf nodes, return its value in string. if (root->left==nullptr && root->right==nullptr) { return to_string(root->data); } string curr = ""; curr += to_string(root->data); // Process the left and right subtree. string left = dupSubRecur(root->left, s, ans); string right = dupSubRecur(root->right, s, ans); // If the node is parent to 2 // leaf nodes, or 1 leaf node and 1 // null node, then concatenate the strings if (left != "" && right != "") { curr += '*'; curr += left; curr += '*'; curr += right; } // Otherwise, there is no need // to process this node. else { return ""; } // If this subtree string is already // present in set, set ans to 1. if (s.find(curr) != s.end()) { ans = 1; } // Else add this string to set. else { s.insert(curr); } return ""; } int dupSub(Node *root) { int ans = 0; unordered_set<string> s; dupSubRecur(root, s, ans); return ans; } int main() { // A // / \ // B C // / \ \ // D E B // / \ // D E Node* root = new Node('A'); root->left = new Node('B'); root->right = new Node('C'); root->left->left = new Node('D'); root->left->right = new Node('E'); root->right->right = new Node('B'); root->right->right->right = new Node('E'); root->right->right->left = new Node('D'); if (dupSub(root)) { cout << "True" << endl; } else { cout << "False" << endl; } return 0; } Java // Java program to find if there is a duplicate // sub-tree of size 2 or more. import java.util.HashSet; class Node { char data; Node left, right; Node(char x) { data = x; left = null; right = null; } } class GfG { // Function which checks all the subtree of size 2 or // 3 if they are duplicate. static String dupSubRecur(Node root, HashSet<String> s, int[] ans) { // For null nodes, if (root == null) return "N"; // For leaf nodes, return its value in string. if (root.left == null && root.right == null) { return String.valueOf(root.data); } String curr = ""; curr += root.data; // Process the left and right subtree. String left = dupSubRecur(root.left, s, ans); String right = dupSubRecur(root.right, s, ans); // If the node is parent to 2 // leaf nodes, or 1 leaf node and 1 // null node, then concatenate the strings if (!left.equals("") && !right.equals("")) { curr += '*' + left + '*' + right; } else { return ""; } // If this subtree string is already // present in set, set ans to 1. if (s.contains(curr)) { ans[0] = 1; } else { s.add(curr); } return ""; } static int dupSub(Node root) { int[] ans = {0}; HashSet<String> s = new HashSet<>(); dupSubRecur(root, s, ans); return ans[0]; } public static void main(String[] args) { // A // / \ // B C // / \ \ // D E B // / \ // D E Node root = new Node('A'); root.left = new Node('B'); root.right = new Node('C'); root.left.left = new Node('D'); root.left.right = new Node('E'); root.right.right = new Node('B'); root.right.right.right = new Node('E'); root.right.right.left = new Node('D'); if (dupSub(root) == 1) { System.out.println("True"); } else { System.out.println("False"); } } } Python # Python program to find if there is a duplicate # sub-tree of size 2 or more. class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function which checks all the subtree of size 2 or # 3 if they are duplicate. def dupSubRecur(root, s, ans): # For null nodes, if root is None: return "N" # For leaf nodes, return its value in string. if root.left is None and root.right is None: return str(root.data) curr = str(root.data) # Process the left and right subtree. left = dupSubRecur(root.left, s, ans) right = dupSubRecur(root.right, s, ans) # If the node is parent to 2 # leaf nodes, or 1 leaf node and 1 # null node, then concatenate the strings if left != "" and right != "": curr += '*' + left + '*' + right else: return "" # If this subtree string is already # present in set, set ans to 1. if curr in s: ans[0] = 1 else: s.add(curr) return "" def dupSub(root): ans = [0] s = set() dupSubRecur(root, s, ans) return ans[0] if __name__ == "__main__": # A # / \ # B C # / \ \ # D E B # / \ # D E root = Node('A') root.left = Node('B') root.right = Node('C') root.left.left = Node('D') root.left.right = Node('E') root.right.right = Node('B') root.right.right.right = Node('E') root.right.right.left = Node('D') if dupSub(root): print("True") else: print("False") C# // C# program to find if there is a duplicate // sub-tree of size 2 or more. using System; using System.Collections.Generic; class Node { public char data; public Node left, right; public Node(char x) { data = x; left = null; right = null; } } class GfG { // Function which checks all the subtree of size 2 or // 3 if they are duplicate. static string dupSubRecur(Node root, HashSet<string> s, ref int ans) { // For null nodes, if (root == null) return "N"; // For leaf nodes, return its value in string. if (root.left == null && root.right == null) { return root.data.ToString(); } string curr = root.data.ToString(); // Process the left and right subtree. string left = dupSubRecur(root.left, s, ref ans); string right = dupSubRecur(root.right, s, ref ans); // If the node is parent to 2 // leaf nodes, or 1 leaf node and 1 // null node, then concatenate the strings if (left != "" && right != "") { curr += "*" + left + "*" + right; } else { return ""; } // If this subtree string is already // present in set, set ans to 1. if (s.Contains(curr)) { ans = 1; } else { s.Add(curr); } return ""; } static int dupSub(Node root) { int ans = 0; HashSet<string> s = new HashSet<string>(); dupSubRecur(root, s, ref ans); return ans; } static void Main() { // A // / \ // B C // / \ \ // D E B // / \ // D E Node root = new Node('A'); root.left = new Node('B'); root.right = new Node('C'); root.left.left = new Node('D'); root.left.right = new Node('E'); root.right.right = new Node('B'); root.right.right.right = new Node('E'); root.right.right.left = new Node('D'); Console.WriteLine(dupSub(root) == 1 ? "True" : "False"); } } JavaScript // JavaScript program to find if there is a duplicate // sub-tree of size 2 or more. class Node { constructor(data) { this.data = data; this.left = null; this.right = null; } } // Function which checks all the subtree of size 2 or // 3 if they are duplicate. function dupSubRecur(root, s, ans) { // For null nodes, if (root === null) return "N"; // For leaf nodes, return its value in string. if (root.left === null && root.right === null) { return root.data.toString(); } let curr = root.data.toString(); // Process the left and right subtree. let left = dupSubRecur(root.left, s, ans); let right = dupSubRecur(root.right, s, ans); // If the node is parent to 2 // leaf nodes, or 1 leaf node and 1 // null node, then concatenate the strings if (left !== "" && right !== "") { curr += '*' + left + '*' + right; } else { return ""; } // If this subtree string is already // present in set, set ans to 1. if (s.has(curr)) { ans[0] = 1; } else { s.add(curr); } return ""; } function dupSub(root) { let ans = [0]; let s = new Set(); dupSubRecur(root, s, ans); return ans[0]; } // A // / \ // B C // / \ \ // D E B // / \ // D E let root = new Node('A'); root.left = new Node('B'); root.right = new Node('C'); root.left.left = new Node('D'); root.left.right = new Node('E'); root.right.right = new Node('B'); root.right.right.right = new Node('E'); root.right.right.left = new Node('D'); console.log(dupSub(root) ? "True" : "False"); OutputTrue Duplicate subtree in Binary Tree | DSA Problem Comment More infoAdvertise with us Next Article Analysis of Algorithms K kartik Improve Article Tags : Tree DSA Google Practice Tags : GoogleTree Similar Reads Basics & PrerequisitesLogic Building ProblemsLogic building is about creating clear, step-by-step methods to solve problems using simple rules and principles. Itâs the heart of coding, enabling programmers to think, reason, and arrive at smart solutions just like we do.Here are some tips for improving your programming logic: Understand the pro 2 min read Analysis of AlgorithmsAnalysis of Algorithms is a fundamental aspect of computer science that involves evaluating performance of algorithms and programs. Efficiency is measured in terms of time and space.BasicsWhy is Analysis Important?Order of GrowthAsymptotic Analysis Worst, Average and Best Cases Asymptotic NotationsB 1 min read Data StructuresArray Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous 3 min read String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut 2 min read Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The 2 min read Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List: 2 min read Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first 2 min read Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems 2 min read Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most 4 min read Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of 3 min read Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this 15+ min read AlgorithmsSearching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input 2 min read Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution 14 min read Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get 3 min read Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net 3 min read Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of 3 min read Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit 4 min read AdvancedSegment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree 3 min read Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i 2 min read GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br 2 min read Interview PreparationInterview Corner: All Resources To Crack Any Tech InterviewThis article serves as your one-stop guide to interview preparation, designed to help you succeed across different experience levels and company expectations. Here is what you should expect in a Tech Interview, please remember the following points:Tech Interview Preparation does not have any fixed s 3 min read GfG160 - 160 Days of Problem SolvingAre you preparing for technical interviews and would like to be well-structured to improve your problem-solving skills? Well, we have good news for you! GeeksforGeeks proudly presents GfG160, a 160-day coding challenge starting on 15th November 2024. In this event, we will provide daily coding probl 3 min read Practice ProblemGeeksforGeeks Practice - Leading Online Coding PlatformGeeksforGeeks Practice is an online coding platform designed to help developers and students practice coding online and sharpen their programming skills with the following features. GfG 160: This consists of most popular interview problems organized topic wise and difficulty with with well written e 6 min read Problem of The Day - Develop the Habit of CodingDo you find it difficult to develop a habit of Coding? If yes, then we have a most effective solution for you - all you geeks need to do is solve one programming problem each day without any break, and BOOM, the results will surprise you! Let us tell you how:Suppose you commit to improve yourself an 5 min read Like