Absolute difference of all pairwise consecutive elements in a Set
Last Updated :
28 Dec, 2021
Given a set of integers of N elements. The task is to print the absolute difference of all of the pairwise consecutive elements in a set. Pairwise consecutive pairs of a set of size N are accessed using iterator.
Example:
Input: s = {8, 5, 4, 3, 15, 20}
Output: 1 1 3 7 5
Explanation:
The set is : 3 4 5 8 15 20
The difference between 4 and 3 is 1
The difference between 5 and 4 is 1
The difference between 8 and 5 is 3
The difference between 15 and 8 is 7
The difference between 20 and 15 is 5
Input: s = {5, 10, 15, 20}
Output: 5 5 5
Explanation:
The set is : 5 10 15 20
The difference between 10 and 5 is 5
The difference between 15 and 10 is 5
The difference between 20 and 15 is 5
The article Absolute Difference of all pairwise consecutive elements in an array covers the approach to find the absolute difference of all pairwise consecutive elements in an array.
Approach: This problem can be solved using two pointer algorithm. We will be using iterators as the two pointers to iterate the set and check for a given condition. Follow the steps below to understand the solution to the above problem:
- Declare two iterators itr1 and itr2 and both of them point to the beginning element of the set.
- Increment itr2 i.e. itr2++ at the beginning of the loop.
- Subtract values pointed by itr1 and itr2 i.e. *itr2 - *itr1.
- Increment itr1 at the end of the loop, this means *itr1++.
- If itr2 reaches the end of the set, then break the loop and exit.
In C++, the set elements are sorted and duplicates are removed before storing in the memory. Therefore, in the below C++ program the difference between the pairwise consecutive elements is computed on the sorted set as explained in the above examples.
Below is the C++ program implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the
// difference of consecutive pairwise
// elements in a set
void display_difference(set<int> s)
{
// Declaring the set iterator
set<int>::iterator itr;
// Printing difference between
// consecutive elements in a set
set<int>::iterator itr1 = s.begin();
set<int>::iterator itr2 = s.begin();
while (1) {
itr2++;
if (itr2 == s.end())
break;
cout << (*itr2 - *itr1) << " ";
itr1++;
}
}
// Driver code
int main()
{
// Declaring the set
set<int> s{ 8, 5, 4, 3, 15, 20 };
// Invoking the display_difference()
// function
display_difference(s);
return 0;
}
Java
// Java program to implement
// the above approach
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.TreeSet;
// Function to calculate the
// difference of consecutive pairwise
// elements in a set
class GFG {
static void display_difference(HashSet<Integer> S) {
// Printing difference between
// consecutive elements in a set
TreeSet<Integer> s = new TreeSet<Integer>(S);
int itr1 = 0;
int itr2 = 0;
while (true) {
itr2 += 1;
;
if (itr2 >= s.size()) {
break;
}
List<Integer> temp = new ArrayList<Integer>();
temp.addAll(s);
System.out.print((temp.get(itr2) - temp.get(itr1)) + " ");
itr1 += 1;
}
}
// Driver code
public static void main(String args[])
{
// Declaring the set
HashSet<Integer> s = new HashSet<Integer>();
s.add(8);
s.add(5);
s.add(4);
s.add(3);
s.add(15);
s.add(20);
// Invoking the display_difference()
// function
display_difference(s);
}
}
// This code is contributed by gfgking
Python3
# Python 3 program to implement
# the above approach
# Function to calculate the
# difference of consecutive pairwise
# elements in a set
def display_difference(s):
# Printing difference between
# consecutive elements in a set
itr1 = 0
itr2 = 0
while (1):
itr2 += 1
if (itr2 >= len(s)):
break
print((list(s)[itr2] - list(s)[itr1]), end=" ")
itr1 += 1
# Driver code
if __name__ == "__main__":
# Declaring the set
s = set([8, 5, 4, 3, 15, 20])
# Invoking the display_difference()
# function
display_difference(s)
# This code is contributed by ukasp.
C#
// C# program to implement
// the above approach
// Function to calculate the
// difference of consecutive pairwise
// elements in a set
using System;
using System.Collections.Generic;
public class GFG
{
static void display_difference(HashSet<int> S)
{
// Printing difference between
// consecutive elements in a set
SortedSet<int> s = new SortedSet<int>(S);
int itr1 = 0;
int itr2 = 0;
while (true) {
itr2 += 1;
;
if (itr2 >= s.Count) {
break;
}
List<int> temp = new List<int>();
temp.AddRange(s);
Console.Write((temp[itr2] - temp[itr1]) + " ");
itr1 += 1;
}
}
// Driver code
public static void Main(String []args)
{
// Declaring the set
HashSet<int> s = new HashSet<int>();
s.Add(8);
s.Add(5);
s.Add(4);
s.Add(3);
s.Add(15);
s.Add(20);
// Invoking the display_difference()
// function
display_difference(s);
}
}
// This code is contributed by Rajput-Ji.
JavaScript
<script>
// Javascript program to implement
// the above approach
// Function to calculate the
// difference of consecutive pairwise
// elements in a set
function display_difference(s) {
// Printing difference between
// consecutive elements in a set
s = new Set([...s].sort((a, b) => a - b));
let itr1 = 0
let itr2 = 0
while (1) {
itr2 += 1
if (itr2 >= s.size) {
break
}
document.write(([...s][itr2] - [...s][itr1]) + " ")
itr1 += 1
}
}
// Driver code
// Declaring the set
let s = new Set([8, 5, 4, 3, 15, 20]);
// Invoking the display_difference()
// function
display_difference(s)
// This code is contributed by Saurabh Jaiswal
</script>
Output:
1 1 3 7 5
Time Complexity: O(n)
Auxiliary Space: O(n)
Similar Reads
Print distinct absolute differences of all possible pairs from a given array Given an array, arr[] of size N, the task is to find the distinct absolute differences of all possible pairs of the given array.Examples:Input: arr[] = { 1, 3, 6 } Output: 2 3 5 Explanation: abs(arr[0] - arr[1]) = 2 abs(arr[1] - arr[2]) = 3 abs(arr[0] - arr[2]) = 5 Input: arr[] = { 5, 6, 7, 8, 14, 1
9 min read
Length of longest strictly increasing subset with each pair of adjacent elements satisfying the condition 2 * A[i] ≥ A[i + 1] Given an array A[] of size N, the task is to find the length of the longest strictly increasing subset with every pair of adjacent elements satisfying the condition A[i + 1] ? 2 * A[i]. If multiple such subsets are present, then print any one of them. Examples: Input: A[] = {3, 1, 5, 11}Output: 3, 5
9 min read
Absolute Difference of all pairwise consecutive elements in an array Given an array of integers of N elements. The task is to print the absolute difference of all of the pairwise consecutive elements. Pairwise consecutive pairs of an array of size N are (a[i], a[i+1]) for all i ranging from 0 to N-2 Examples: Input: arr[] = {8, 5, 4, 3, 15, 20}Output: 3, 1, 1, 12, 5I
4 min read
Sum of minimum difference between consecutive elements of an array Given an array of pairs where each pair represents a range, the task is to find the sum of the minimum difference between the consecutive elements of an array where the array is filled in the below manner: Each element of an array lies in the range given at its corresponding index in the range array
10 min read
Check if stack elements are pairwise consecutive Given a stack of integers, write a function pairWiseConsecutive() that checks whether numbers in the stack are pairwise consecutive or not. The pairs can be increasing or decreasing, and if the stack has an odd number of elements, the element at the top is left out of a pair. The function should ret
10 min read