Drop One or Multiple Columns From PySpark DataFrame
Last Updated :
17 Jun, 2021
In this article, we will discuss how to drop columns in the Pyspark dataframe.
In pyspark the drop() function can be used to remove values/columns from the dataframe.
Syntax: dataframe_name.na.drop(how=”any/all”,thresh=threshold_value,subset=[“column_name_1″,”column_name_2”])
- how – This takes either of the two values ‘any’ or ‘all’. ‘any’, drop a row if it contains NULLs on any columns and ‘all’, drop a row only if all columns have NULL values. By default it is set to ‘any’
- thresh – This takes an integer value and drops rows that have less than that thresh hold non-null values. By default it is set to ‘None’.
- subset – This parameter is used to select a specific column to target the NULL values in it. By default it’s ‘None
Python code to create student dataframe with three columns:
Python3
# importing module
import pyspark
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
# list of employee data with 5 row values
data =[["1", "sravan", "company 1"],
["3", "bobby", "company 3"],
["2", "ojaswi", "company 2"],
["1", "sravan", "company 1"],
["3", "bobby", "company 3"],
["4", "rohith", "company 2"],
["5", "gnanesh", "company 1"]]
# specify column names
columns = ['Employee ID','Employee NAME','Company Name']
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data,columns)
dataframe.show()
Output:
+-----------+-------------+------------+
|Employee ID|Employee NAME|Company Name|
+-----------+-------------+------------+
| 1| sravan| company 1|
| 3| bobby| company 3|
| 2| ojaswi| company 2|
| 1| sravan| company 1|
| 3| bobby| company 3|
| 4| rohith| company 2|
| 5| gnanesh| company 1|
+-----------+-------------+------------+
Example 1: Delete a single column.
Here we are going to delete a single column from the dataframe.
Syntax: dataframe.drop('column name')
Code:
Python3
# delete single column
dataframe = dataframe.drop('Employee ID')
dataframe.show()
Output:
+-------------+------------+
|Employee NAME|Company Name|
+-------------+------------+
| sravan| company 1|
| bobby| company 3|
| ojaswi| company 2|
| sravan| company 1|
| bobby| company 3|
| rohith| company 2|
| gnanesh| company 1|
+-------------+------------+Example 2:
Example 2: Delete multiple columns.
Here we will delete multiple columns from the dataframe.
Syntax: dataframe.drop(*('column 1','column 2','column n'))
Code:
Python3
# delete two columns
dataframe = dataframe.drop(*('Employee NAME',
'Employee ID'))
dataframe.show()
Output:
+------------+
|Company Name|
+------------+
| company 1|
| company 3|
| company 2|
| company 1|
| company 3|
| company 2|
| company 1|
+------------+
Example 3: Delete all columns
Here we will delete all the columns from the dataframe, for this we will take column's name as a list and pass it into drop().
Python3
list = ['Employee ID','Employee NAME','Company Name']
# delete two columns
dataframe = dataframe.drop(*list)
dataframe.show()
Output:
++
||
++
||
||
||
||
||
||
||
++
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice