Determinant of 4x4 Matrix: Determinant of a Matrix is a fundamental concept in linear algebra, essential for deriving a single scalar value from the matrix. 4x4 is a square matrix with 4 rows and 4 columns whose determinant can be found by a formula which we will discuss.
This article will explore the definition of a 4 × 4 matrix and guide through the step-by-step process of calculating the determinant of 4x4 matrix. Additionally, it explores the practical applications of this mathematical operation.

What is the Determinant of a Matrix?
The determinant of a matrix is a scalar value that can be calculated from the elements of a square matrix. It provides important information about the matrix, such as whether it is invertible and the scaling factor of linear transformations represented by the matrix.
Various methods, such as cofactor expansion or row reduction, can be employed to find the determinant of a matrix, depending on the size and structure of the matrix. Once calculated, the determinant is denoted by the "det" symbol or vertical bars enclosing the matrix.
Determinant of 4x4 Matrix
A 4×4 matrix is a rectangular array of numbers arranged in four rows and four columns. Each element in the matrix is identified by its row and column position. The general form of a 4×4 matrix looks like this:
\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}
Where aij represents the element located in the ith row and jth column of the matrix.
4×4 matrices are commonly encountered in various fields such as computer graphics, physics, engineering, and mathematics. They are used to represent transformations, solve systems of linear equations, and perform operations in linear algebra.
Properties of 4×4 Matrix
Here are some properties of a 4×4 matrix explained in simplified terms:
- Square Matrix: A 4×4 matrix has an equal number of rows and columns, making it a square matrix.
- Determinant: The determinant of a 4×4 matrix can be calculated using methods like cofactor expansion or row reduction. It provides information about the matrix's invertibility and scaling factor for linear transformations.
- Inverse: A 4×4 matrix is invertible if its determinant is non-zero. The inverse of a 4×4 matrix allows solving systems of linear equations and undoing transformations represented by the matrix.
- Transpose: The transpose of a 4×4 matrix is obtained by interchanging its rows and columns. It can be useful in certain computations and transformations.
- Eigenvalues and Eigenvectors: 4×4 matrices can be analysed to find their eigenvalues and eigenvectors, which represent properties of the matrix under linear transformations.
- Symmetry: Depending on the specific matrix, it may exhibit properties of symmetry such as being symmetric, skew-symmetric, or neither.
- Matrix Operations: Various operations such as addition, subtraction, multiplication, and scalar multiplication can be performed on 4×4 matrices following specific rules and properties.
Read in Detail: Properties of Determinants
Determinant of any 4 × 4 Matrix i.e., \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} , can be calculated using the following formula:
det(A) = a11 · det(A11) - a12 · det(A12) + a13 · det(A13) - a14 · det(A14)
Where Aij denotes the submatrix by deleting ith row and jth column.
How do you find the Determinant of a 4 × 4 Matrix?
To find the determinant of a 4x4 matrix, you can use various methods such as expansion by minors, row reduction, or applying specific properties.
One common method is to use expansion by minors, where you expand along a row or column by multiplying each element by its cofactor and summing the results. This process continues recursively until you reach a 2x2 submatrix, for which you can directly compute the determinant. To understand how to find the determinant of a 4×4 matrix consider an example.
\begin{bmatrix}
2 & 1 & 3 & 4 \\
0 & -1 & 2 & 1 \\
3 & 2 & 0 & 5 \\
-1 & 3 & 2 & 1 \\
\end{bmatrix}
Step 1: Expand along the first row:
det(A) = 2 · det(A11) - 1 · det(A12) + 3 · det(A13) - 4 · det(A14)
Where Aij denotes the submatrix obtained by deleting the i-th row and j-th column.
Step 2: Compute the determinant of each 3x3 submatrix.
For A11
A_{11} = \begin{bmatrix}
-1 & 2 & 1 \\
2 & 0 & 5 \\
3 & 2 & 1 \\
\end{bmatrix}
\text{det}(A_{11}) = (-1) \cdot \text{det}\left(\begin{bmatrix} 0 & 5 \\ 2 & 1 \end{bmatrix}\right) - 2 \cdot \text{det}\left(\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}\right) + 1 \cdot \text{det}\left(\begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}\right)
⇒ |A11| = (-1)[(0)(1)-(5)(2)] - 2[(2)(1)-(5)(3)] + 1[(2)(2)-(0)(3)]
⇒ |A11| = (-1)[(-10)] - 2[(2)-(15)] + 1[(4)-(0)]
⇒ |A11| = 10 - 2(-13) + 4
⇒ |A11| = 10 + 26 + 4= 40
For A12
A_{12} = \begin{bmatrix}
0 & 2 & 1 \\
3 & 0 & 5 \\
-1 & 2 & 1 \\
\end{bmatrix}
\text{det}(A_{12}) = (0) \cdot \text{det}\left(\begin{bmatrix} 0 & 5 \\ 2 & 1 \end{bmatrix}\right) - 2 \cdot \text{det}\left(\begin{bmatrix} 3 & 5 \\ -1 & 1 \end{bmatrix}\right) + 1 \cdot \text{det}\left(\begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}\right)
⇒ |A12| = (0)[(0)(1)-(5)(2)] - 2[(3)(1)-(5)(-1)] + 1[(3)(2)-(0)(-1)]
⇒ |A12| = (0)[(-10)] - 2[(3)+(5)] + 1[(6)-(0)]
⇒ |A12| = 0 - 2(8) + 6
⇒ |A12| = 0 - 16+ 6= 10
For A13
A_{13} = \begin{bmatrix}
0 & -1 & 1 \\
3 & 2 & 5 \\
-1 & 3 & 1 \\
\end{bmatrix}
\text{det}(A_{13}) = (0) \cdot \text{det}\left(\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}\right) - (-1) \cdot \text{det}\left(\begin{bmatrix} 3 & 5 \\ -1 & 1 \end{bmatrix}\right) + 2 \cdot \text{det}\left(\begin{bmatrix} 3 & 2 \\ -1 & 3 \end{bmatrix}\right)
⇒ |A13| = (0)[(2)(1)-(3)(5)] - (-1)[(3)(1)-(5)(-1)] + 2[(3)(3)-(2)(-1)]
⇒ |A13| = (0)[(2)-(15)] - (-1)[(3)+(5)] + 2[(9)-(-2)]
⇒ |A13| = 0 - (-1)(8) + 2(11)
⇒ |A13| = 8 + 22= 30
For A14
A_{14} = \begin{bmatrix}
0 & -1 & 2 \\
3 & 2 & 0 \\
-1 & 3 & 2 \\
\end{bmatrix}
\text{det}(A_{14}) = (0) \cdot \text{det}\left(\begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}\right) - (-1) \cdot \text{det}\left(\begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}\right) + 2 \cdot \text{det}\left(\begin{bmatrix} 3 & 2 \\ -1 & 3 \end{bmatrix}\right)
⇒ |A14| = (0)[(2)(2)-(3)(0)] - (-1)[(3)(2)-(0)(-1)] + 2[(3)(3)-(2)(-1)]
⇒ |A14| = (0)[(4)-(0)] - (-1)[(6)-(0)] + 2[(9)-(-2)]
⇒ |A14| = 0 - (-1)(6) + 2(11)
⇒ |A14| = 6 + 22 = 28
Step 3: Substitute the determinants of the 3x3 submatrices into the expansion formula:
(A) = 2 · 40 - 1 · 10 + 3 · 30 - 4 · 28
Step 4: Compute the final determinant:
det(A) = 80 - 10 + 90 - 112
det(A) = 48
So, the determinant of the given 4x4 matrix is 48.
Also, Check
Determinant of 4×4 Matrix Examples
Example 1: A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ 4 & -1 & 2 & 0 \\ -3 & 2 & 1 & 5 \\ 1 & 0 & -2 & 3 \end{bmatrix}
Solution:
First Expand along the first row:
\text{det}(A) = 2 \cdot \text{det}(A_{11}) - 1 \cdot \text{det}(A_{12}) + 0 \cdot \text{det}(A_{13}) - 3 \cdot \text{det}(A_{14})
Now, compute the determinant of each 3x3 submatrix.
For (A11):
A_{11} = \begin{bmatrix} -1 & 2 & 0 \\ 2 & 1 & 5 \\ 0 & -2 & 3 \end{bmatrix}
\text{det}(A_{11}) = (-1) \cdot \text{det}\left(\begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}\right) - 2 \cdot \text{det}\left(\begin{bmatrix} 2 & 5 \\ 0 & 3 \end{bmatrix}\right) + 0 \cdot \text{det}\left(\begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}\right)
= (-1)((1)(3)-(5)(-2)) - 2((2)(3)-(5)(0)) + 0((2)(-2)-(1)(0))
= (-1)((3)+(10)) - 2((6)-(0)) + 0((-4)-(0))
= (-1)(13) - 2(6) + 0(-4)
= -13 - 12
= -25
For (A12):
A_{12} = \begin{bmatrix} 2 & 0 & 3 \\ -3 & 1 & 5 \\ 1 & 2 & 3 \end{bmatrix}
\text{det}(A_{12}) = (2) \cdot \text{det}\left(\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}\right) - (0) \cdot \text{det}\left(\begin{bmatrix} -3 & 5 \\ 1 & 3 \end{bmatrix}\right) + (3) \cdot \text{det}\left(\begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix}\right)
= (2)((1)(3)-(5)(2)) - (0)((-3)(3)-(5)(1)) + (3)((-3)(2)-(1)(1))
= (2)((3)-(10)) - (0)((-9)-(5)) + (3)((-6)-(1))
= (2)(-7) - (0)(-14) + (3)(-7)
= -14 - 0 - 21
= -35
For (A13):
A_{13} = \begin{bmatrix} 2 & 1 & 3 \\ -3 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}
\text{det}(A_{13}) = (2) \cdot \text{det}\left(\begin{bmatrix} 2 & 5 \\ 0 & 3 \end{bmatrix}\right) - (1) \cdot \text{det}\left(\begin{bmatrix} -3 & 5 \\ 1 & 3 \end{bmatrix}\right) + (3) \cdot \text{det}\left(\begin{bmatrix} -3 & 2 \\ 1 & 0 \end{bmatrix}\right)
= (2)((2)(3)-(5)(0)) - (1)((-3)(3)-(5)(1)) + (3)((-3)(0)-(2)(1))
= (2)((6)-(0)) - (1)((-9)-(5)) + (3)((0)-(2))
= (2)(6) - (1)(-14) + (3)(-2)
= 12 + 14 - 6
= 20
For (A14):
A_{14} = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 0 & -2 \end{bmatrix}
\text{det}(A_{14}) = (2) \cdot \text{det}\left(\begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}\right) - (1) \cdot \text{det}\left(\begin{bmatrix} -3 & 1 \\ 1 & -2 \end{bmatrix}\right) + (0) \cdot \text{det}\left(\begin{bmatrix} -3 & 2 \\ 1 & 0 \end{bmatrix}\right)
= (2)((2)(-2)-(1)(0)) - (1)((-3)(-2)-(1)(1)) + (0)((-3)(0)-(2)(1))
= (2)((-4)-(0)) - (1)((6)-(1)) + (0)((0)-(2))
= (2)(-4) - (1)(5) + (0)(-2)
= -8 - 5 + 0
= -13
Now, substitute the determinants of the 3x3 submatrices into the expansion formula:
det(A) = 2 \cdot (-25) - 1 \cdot (-35) + 0 - 3 \cdot (-13)
= -50 + 35 + 0 + 39
= -50 + 35 + 39
= 24
So, the determinant of matrix (A) is 24.
Example 2: Calculate the determinant of the matrix A = \begin{bmatrix} 2 & 1 & -3 & 4 \\ -1 & 0 & 2 & 5 \\ 3 & 2 & 1 & 0 \\ 4 & -2 & 3 & 1 \end{bmatrix}
Solution:
To find the determinant of the matrix ( A ), we'll use the expansion by minors method along the first row:
\text{det}(A) = 2 \cdot \begin{vmatrix} 0 & 2 & 5 \\ 2 & 1 & 0 \\ -2 & 3 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} -1 & 2 & 5 \\ 3 & 1 & 0 \\ 4 & 3 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} -1 & 0 & 5 \\ 3 & 2 & 0 \\ 4 & -2 & 3 \end{vmatrix} + 4 \cdot \begin{vmatrix} -1 & 0 & 2 \\ 3 & 2 & 1 \\ 4 & -2 & 3 \end{vmatrix}
Now, let's compute the determinants of the 3x3 submatrices:
\text{det}\left( \begin{vmatrix} 0 & 2 & 5 \\ 2 & 1 & 0 \\ -2 & 3 & 1 \end{vmatrix} \right) = 2 \cdot (0 \cdot (1 \cdot 1 - 0 \cdot 3) - 2 \cdot (2 \cdot 1 - 0 \cdot (-2)) + 5 \cdot (2 \cdot 3 - 2 \cdot (-2)))
= 2 · (0 - 4 + 30) = 52
\text{det}\left( \begin{vmatrix} -1 & 2 & 5 \\ 3 & 1 & 0 \\ 4 & 3 & 1 \end{vmatrix} \right) = -1 \cdot ((1 \cdot 1 - 0 \cdot 3) - 2 \cdot (3 \cdot 1 - 0 \cdot 4) + 5 \cdot (3 \cdot 3 - 1 \cdot 4))
= -1 · (1 - 6 + 45) = 60
\text{det}\left( \begin{vmatrix} -1 & 0 & 5 \\ 3 & 2 & 0 \\ 4 & -2 & 3 \end{vmatrix} \right) = -1 \cdot ((2 \cdot 3 - 0 \cdot (-2)) - 0 \cdot (3 \cdot 5 - 0 \cdot 4) + 5 \cdot (3 \cdot (-2) - 2 \cdot 4))
= -1 · (6 - 0 - 50) = 44
\text{det}\left( \begin{vmatrix} -1 & 0 & 2 \\ 3 & 2 & 1 \\ 4 & -2 & 3 \end{vmatrix} \right) = -1 \cdot ((2 \cdot 3 - 1 \cdot (-2)) - 0 \cdot (2 \cdot 3 - 1 \cdot 4) + 2 \cdot (3 \cdot (-2) - 2 \cdot 4))
= -1 · (8 - 0 + 0) = -8
Now, substitute these determinants back into the expansion formula:
det(A) = 2 · 52 - 1 · 60 - 3 · 44 + 4 · (-8) = 104 - 60 - 132 - 32 = -120
So, the determinant of matrix ( A ) is det(A) = -120.
Example 3: Find the determinant of the matrix B = \begin{bmatrix} -2 & 3 & 1 & 0 \\ 4 & 1 & -3 & 2 \\ 0 & -1 & 2 & 5 \\ 3 & 2 & 0 & -4 \end{bmatrix}
Solution:
To find the determinant of matrix ( B ), we'll use the expansion by minors method along the first row:
\text{det}(B) = -2 \cdot \begin{vmatrix} 1 & -3 & 2 \\ -1 & 2 & 5 \\ 2 & 0 & -4 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & -3 & 2 \\ 0 & 2 & 5 \\ 3 & 0 & -4 \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & 1 & 0 \\ 0 & -1 & 2 \\ 3 & 4 & -4 \end{vmatrix} + 0 \cdot \begin{vmatrix} 4 & 1 & 0 \\ 0 & -1 & 2 \\ 3 & 4 & 1 \end{vmatrix}
Now, let's compute the determinants of the 3x3 submatrices:
\text{det}\left( \begin{vmatrix} 1 & -3 & 2 \\ -1 & 2 & 5 \\ 2 & 0 & -4 \end{vmatrix} \right) = -2 \cdot (1 \cdot (2 \cdot (-4) - 5 \cdot 0) - (-3) \cdot (-1 \cdot (-4) - 5 \cdot 2) + 2 \cdot (-1 \cdot 0 - 2 \cdot 2))
= -2 ⋅ (1 ⋅ (-8) - (-3) ⋅ (4 - 10) + 2 ⋅ (-4))
= -2 ⋅ (-8 + 18 - 8) = -2 ⋅ 2 = -4
\text{det}\left( \begin{vmatrix} 4 & -3 & 2 \\ 0 & 2 & 5 \\ 3 & 0 & -4 \end{vmatrix} \right) = 3 \cdot (4 \cdot (2 \cdot (-4) - 5 \cdot 0) - (-3) \cdot (0 \cdot (-4) - 5 \cdot 3) + 2 \cdot (0 \cdot 0 - 2 \cdot 3))
= 3 ⋅ (4 ⋅ (-8) - (-3) ⋅ (0 - 15) + 2 ⋅ (0 - 6))
= 3 ⋅ (-32 + 45 - 12) = 3 ⋅ 1 = 3
\text{det}\left( \begin{vmatrix} 4 & 1 & 0 \\ 0 & -1 & 2 \\ 3 & 4 & -4 \end{vmatrix} \right) = -1 \cdot (4 \cdot (-4) - 2 \cdot 4) - 1 \cdot (0 \cdot (-4) - 2 \cdot 3) + 2 \cdot (0 \cdot 4 - (-1) \cdot 3)
= -1 ⋅ (-16 - 8) - 1 ⋅ (0 - 6) + 2 ⋅ (0 + 3)
= -1 ⋅ (-24) - 1 ⋅ (-6) + 2 ⋅ 3
= 24 + 6 + 6
= 36
Now, substitute these determinants back into the expansion formula:
det(B) = -2 ⋅ (-4) + 3 ⋅ 3 - 1 ⋅ 36 + 0 ⋅ anything
= 8 + 9 - 36 + 0
= -19
So, the determinant of matrix ( B ) is det(B) = -19
Determinant of 4×4 Matrix Practice Questions
Q1: Calculate the determinant of the following 4×4 matrix: A = \begin{bmatrix}
2 & 0 & 1 & 3 \\
-1 & 2 & 2 & 0 \\
3 & -2 & 0 & 1 \\
1 & 1 & 2 & -1 \\
\end{bmatrix}
Q2: Find the determinant of the matrix: B = \begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
2 & 3 & 4 & 5 \\
\end{bmatrix}
Q3: Calculate the determinant of the following 4×4 matrix: C = \begin{bmatrix}
2 & 1 & 0 & -1 \\
3 & 2 & -1 & 0 \\
0 & -3 & 2 & 1 \\
1 & 0 & 3 & -2 \\
\end{bmatrix}
Q4: Determine the determinant of the matrix: D = \begin{bmatrix}
4 & 2 & 1 & 0 \\
-1 & 3 & 0 & 2 \\
0 & 2 & 1 & -3 \\
2 & 0 & -1 & 4 \\
\end{bmatrix}
Q5: Find the determinant of the matrix: E = \begin{bmatrix}
3 & 1 & -2 & 0 \\
2 & 0 & 1 & 1 \\
-1 & 2 & 3 & -2 \\
0 & 3 & -1 & 1 \\
\end{bmatrix}
Similar Reads
How to find the Determinant of a Matrix?
Answer: The following steps are to be followed to find the Determinant of a Matrix Select any row or column. To find the determinant, we normally start with the first row.Determine the co-factors of each of the row/column items that we picked in Step 1.Multiply the row/column items from Step 1 by th
6 min read
How to determine Eigenvalues of a Matrix?
Eigenvalue is defined as a scalar associated with a given linear transformation of a vector space and having the property that there is some non-zero vector which when multiplied by the scalar is equal to the vector obtained by letting the transformation operate on the vector. The roots of the linea
5 min read
Determinant of Matrix with Solved Examples
The determinant of a matrix is a scalar value that can be calculated for a square matrix (a matrix with the same number of rows and columns). It serves as a scaling factor that is used for the transformation of a matrix.It is a single numerical value that plays a key role in various matrix operation
15+ min read
How to find the Diagonal of a Matrix?
British Mathematician Arthur Cayley was the first person to develop the algebraic aspect of the matrix. After that, Psychiat Heisenberg used matrices as a tool to explain his famous Quantum principle. The study of matrices originated while solving different types of simple and complex linear problem
6 min read
Find determinant of a complex matrix in PyTorch
Linear Algebra module torch.linalg of PyTorch provides the function torch.linalg.det() to compute the determinant of a square(real or complex) matrix. This function also computes the determinant of each square matrix in a batch. Syntax: torch.linalg.det(input) --> Tensor input is an (n, n) matri
3 min read
Cofactor of a Matrix: Formula and Examples
The cofactor of a Matrix is an important concept in linear algebra. It is often used in calculating the determinant and the inverse of a matrix. Cofactor of Matrix or Cofactor matrix is the matrix formed by the Cofactor of each element of any matrix where cofactor is a number that is obtained by mul
11 min read
How to Calculate Determinant of a Matrix in PHP?
Given a Matrix of size M*N, where N and M is an Integer, we need to Calculate calculate of a Matrix in PHP. Example: Input: [[1, 2],[2, 3]]Output: 6Explanation: (1*3)-(2*2)= 6-4= 2 There are several ways to find the determinant of the matrix in PHP which are as follows: Table of Content Using Recurs
4 min read
Determinant of 2x2 Matrix
Determinant of a 2x2 Matrix A = \begin{bmatrix} a&b \\ c&d \\ \end{bmatrix} is denoted as |A| and is calculated as |A| = [ad - bc]. It is used in solving various problems related to a matrix and is used in finding the Inverse, and Rank of 2Ã2 Matrix.In this article, we will learn about, the
7 min read
How to Find Rank of a 3x3 Matrix
Rank of a matrix is equal to the number of linear independent rows or columns in it. The rank of the matrix is always less than or equal to the order of the matrix. In this article we will explore how to find rank of 3Ã3 matrix in detail along with the basics of the rank of a matrix. Table of Conten
6 min read
Determinant of a Square Matrix
Determinant of a square matrix is the scalar value or number calculated using the square matrix. The determinant of square matrix X is represented as |X| or det(X). In this article we will explore the determinant of square matrix in detail along with the determinant definition, determinant represent
6 min read