Data Normalization in Data Mining Last Updated : 14 Feb, 2025 Comments Improve Suggest changes Like Article Like Report Data normalization is a technique used in data mining to transform the values of a dataset into a common scale. This is important because many machine learning algorithms are sensitive to the scale of the input features and can produce better results when the data is normalized. Normalization is used to scale the data of an attribute so that it falls in a smaller range, such as -1.0 to 1.0 or 0.0 to 1.0. It is generally useful for classification algorithms.Need of Normalization Normalization is generally required when we are dealing with attributes on a different scale, otherwise, it may lead to a dilution in effectiveness of an important equally important attribute(on lower scale) because of other attribute having values on larger scale. In simple words, when multiple attributes are there but attributes have values on different scales, this may lead to poor data models while performing data mining operations. So they are normalized to bring all the attributes on the same scale. Methods of Data Normalization Decimal ScalingMin-Max Normalizationz-Score Normalization(zero-mean Normalization)1. Decimal Scaling Method For Normalization It normalizes by moving the decimal point of values of the data. To normalize the data by this technique, we divide each value of the data by the maximum absolute value of data. The data value, vi, of data is normalized to vi' by using the formula below - where j is the smallest integer such that max(|vi'|)<1. Example :Let the input data is: -10, 201, 301, -401, 501, 601, 701. To normalize the above data, Step 1: Maximum absolute value in given data(m): 701 Step 2: Divide the given data by 1000 (i.e j=3) Result: The normalized data is: -0.01, 0.201, 0.301, -0.401, 0.501, 0.601, 0.7012. Min-Max Normalization In this technique of data normalization, linear transformation is performed on the original data. Minimum and maximum value from data is fetched and each value is replaced according to the following formula. Where A is the attribute data, Min(A), Max(A) are the minimum and maximum absolute value of A respectively. v' is the new value of each entry in data. v is the old value of each entry in data. new_max(A), new_min(A) is the max and min value of the range(i.e boundary value of range required) respectively.3. Z-score normalization In this technique, values are normalized based on mean and standard deviation of the data A. The formula used is: v', v is the new and old of each entry in data respectively. σA, A is the standard deviation and mean of A respectively.Advantages of Data NormalizationImproved performance of machine learning algorithms: Normalization can help to improve the performance of machine learning algorithms by scaling the input features to a common scale. This can help to reduce the impact of outliers and improve the accuracy of the model.Better handling of outliers: Normalization can help to reduce the impact of outliers by scaling the data to a common scale, which can make the outliers less influential.Improved interpretability of results: Normalization can make it easier to interpret the results of a machine learning model, as the inputs will be on a common scale.Better generalization: Normalization can help to improve the generalization of a model, by reducing the impact of outliers and by making the model less sensitive to the scale of the inputs.Disadvantages of Data NormalizationLoss of information: Normalization can result in a loss of information if the original scale of the input features is important.Impact on outliers: Normalization can make it harder to detect outliers as they will be scaled along with the rest of the data.Impact on interpretability: Normalization can make it harder to interpret the results of a machine learning model, as the inputs will be on a common scale, which may not align with the original scale of the data.Additional computational costs: Normalization can add additional computational costs to the data mining process, as it requires additional processing time to scale the data. Comment More infoAdvertise with us Next Article Aggregation in Data Mining D deepak_jain Follow Improve Article Tags : Computer Subject Machine Learning data mining Practice Tags : Machine Learning Similar Reads Data Warehousing Tutorial Data warehousing refers to the process of collecting, storing, and managing data from different sources in a centralized repository. It allows businesses to analyze historical data and make informed decisions. The data is structured in a way that makes it easy to query and generate reports.A data wa 2 min read Basics of Data WarehousingData WarehousingA data warehouse is a centralized system used for storing and managing large volumes of data from various sources. It is designed to help businesses analyze historical data and make informed decisions. Data from different operational systems is collected, cleaned, and stored in a structured way, ena 10 min read History of Data WarehousingThe data warehouse is a core repository that performs aggregation to collect and group data from various sources into a central integrated unit. The data from the warehouse can be retrieved and analyzed to generate reports or relations between the datasets of the database which enhances the growth o 7 min read Data Warehouse ArchitectureA Data Warehouse is a system that combine data from multiple sources, organizes it under a single architecture, and helps organizations make better decisions. It simplifies data handling, storage, and reporting, making analysis more efficient. Data Warehouse Architecture uses a structured framework 10 min read Difference between Data Mart, Data Lake, and Data WarehouseA Data Mart, Data Lake, and Data Warehouse are all used for storing and analyzing data, but they serve different purposes. A Data Warehouse stores structured, processed data for reporting, a Data Lake holds raw, unstructured data for flexible analysis, and a Data Mart is a smaller, focused version o 5 min read Data Loading in Data warehouseThe data warehouse is structured by the integration of data from different sources. Several factors separate the data warehouse from the operational database. Since the two systems provide vastly different functionality and require different types of data, it is necessary to keep the data database s 5 min read OLAP TechnologyOLAP ServersOnline Analytical Processing(OLAP) refers to a set of software tools used for data analysis in order to make business decisions. OLAP provides a platform for gaining insights from databases retrieved from multiple database systems at the same time. It is based on a multidimensional data model, which 4 min read Difference Between OLAP and OLTP in DatabasesOLAP (Online Analytical Processing) and OLTP (Online Transaction Processing) are both integral parts of data management, but they have different functionalities.OLTP focuses on handling large numbers of transactional operations in real time, ensuring data consistency and reliability for daily busine 6 min read Difference between ELT and ETLIn managing and analyzing data, two primary approaches i.e. ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform), are commonly used to move data from various sources into a data warehouse. Understanding the differences between these methods is crucial for selecting the right approach ba 5 min read Types of OLAP Systems in DBMSOLAP is considered (Online Analytical Processing) which is a type of software that helps in analyzing information from multiple databases at a particular time. OLAP is simply a multidimensional data model and also applies querying to it. Types of OLAP ServersRelational OLAPMulti-Dimensional OLAPHybr 6 min read Data Warehousing ModelData Modeling Techniques For Data WarehouseData modeling is the process of designing a visual representation of a system or database to establish how data will be stored, accessed, and managed. In the context of a data warehouse, data modeling involves defining how different data elements interact and how they are organized for efficient ret 5 min read Difference between Fact Table and Dimension TableIn information warehousing, fact tables and Dimension tables are major parts of a star or snowflake composition. Fact tables store quantitative information and measurements, for example, income or request amounts, which are commonly accumulated for examination. These tables are described by their nu 8 min read Data Modeling Techniques For Data WarehouseData modeling is the process of designing a visual representation of a system or database to establish how data will be stored, accessed, and managed. In the context of a data warehouse, data modeling involves defining how different data elements interact and how they are organized for efficient ret 5 min read Concept Hierarchy in Data MiningPrerequisites: Data Mining, Data Warehousing Data mining refers to the process of discovering insights, patterns, and knowledge from large data. It involves using techniques from fields such as statistics, machine learning, and artificial intelligence to extract insights and knowledge from data. Dat 7 min read Data TransformationWhat is Data Transformation?Data transformation is an important step in data analysis process that involves the conversion, cleaning, and organizing of data into accessible formats. It ensures that the information is accessible, consistent, secure, and finally recognized by the intended business users. This process is undertak 6 min read Data Normalization in Data MiningData normalization is a technique used in data mining to transform the values of a dataset into a common scale. This is important because many machine learning algorithms are sensitive to the scale of the input features and can produce better results when the data is normalized. Normalization is use 5 min read Aggregation in Data MiningAggregation in data mining is the process of finding, collecting, and presenting the data in a summarized format to perform statistical analysis of business schemes or analysis of human patterns. When numerous data is collected from various datasets, it's important to gather accurate data to provide 7 min read DiscretizationDiscretization is the process of converting continuous data or numerical values into discrete categories or bins. This technique is often used in data analysis and machine learning to simplify complex data and make it easier to analyze and work with. Instead of dealing with exact values, discretizat 3 min read What is Data Sampling - Types, Importance, Best PracticesData Sampling is a statistical method that is used to analyze and observe a subset of data from a larger piece of dataset and configure all the required meaningful information from the subset that helps in gaining information or drawing conclusion for the larger dataset or it's parent dataset. Sampl 9 min read Difference Between Feature Selection and Feature ExtractionFeature selection and feature extraction are two key techniques used in machine learning to improve model performance by handling irrelevant or redundant features. While both works on data preprocessing, feature selection uses a subset of existing features whereas feature extraction transforms data 2 min read Introduction to Dimensionality ReductionWhen working with machine learning models, datasets with too many features can cause issues like slow computation and overfitting. Dimensionality reduction helps to reduce the number of features while retaining key information. Techniques like principal component analysis (PCA), singular value decom 4 min read Advanced Data WarehousingMeasures in Data Mining - Categorization and ComputationIn data mining, Measures are quantitative tools used to extract meaningful information from large sets of data. They help in summarizing, describing, and analyzing data to facilitate decision-making and predictive analytics. Measures assess various aspects of data, such as central tendency, variabil 5 min read Rules For Data Warehouse ImplementationA data warehouse is a central system where businesses store and organize data from various sources, making it easier to analyze and extract valuable insights. It plays a vital role in business intelligence, helping companies make informed decisions based on accurate, historical data. Proper implemen 5 min read How To Maximize Data Warehouse PerformanceData warehouse performance plays a crucial role in ensuring that businesses can efficiently store, manage and analyze large volumes of data. Optimizing the performance of a data warehouse is essential for enhancing business intelligence (BI) capabilities, enabling faster decision-making and providin 6 min read Top 15 Popular Data Warehouse ToolsA data warehouse is a data management system that is used for storing, reporting and data analysis. It is the primary component of business intelligence and is also known as an enterprise data warehouse. Data Warehouses are central repositories that store data from one or more heterogeneous sources. 11 min read Data Warehousing SecurityData warehousing is the act of gathering, compiling, and analyzing massive volumes of data from multiple sources to assist commercial decision-making processes is known as data warehousing. The data warehouse acts as a central store for data, giving decision-makers access to real-time data analysis 7 min read PracticeLast Minute Notes (LMNs) - Data WarehousingA Data Warehouse (DW) is a centralized system that stores large amounts of structured data from various sources, optimized for analysis, reporting, and decision-making. Unlike transactional databases, which handle daily operations, a data warehouse focuses on analytical processing. This article cove 15+ min read Like