C++ Program for Maximum Product Subarray
Last Updated :
17 Aug, 2023
Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used.
Examples:
Input: arr[] = {6, -3, -10, 0, 2}
Output: 180 // The subarray is {6, -3, -10}
Input: arr[] = {-1, -3, -10, 0, 60}
Output: 60 // The subarray is {60}
Input: arr[] = {-2, -40, 0, -2, -3}
Output: 80 // The subarray is {-2, -40}
Naive Solution:
The idea is to traverse over every contiguous subarrays, find the product of each of these subarrays and return the maximum product from these results.
Below is the implementation of the above approach.
C++
// C++ program to find Maximum Product Subarray
#include <bits/stdc++.h>
using namespace std;
/* Returns the product of max product subarray.*/
int maxSubarrayProduct(int arr[], int n)
{
// Initializing result
int result = arr[0];
for (int i = 0; i < n; i++)
{
int mul = arr[i];
// traversing in current subarray
for (int j = i + 1; j < n; j++)
{
// updating result every time
// to keep an eye over the maximum product
result = max(result, mul);
mul *= arr[j];
}
// updating the result for (n-1)th index.
result = max(result, mul);
}
return result;
}
// Driver code
int main()
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Maximum Sub array product is "
<< maxSubarrayProduct(arr, n);
return 0;
}
// This code is contributed by yashbeersingh42
Output:
Maximum Sub array product is 112
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Solution:
The following solution assumes that the given input array always has a positive output. The solution works for all cases mentioned above. It doesn't work for arrays like {0, 0, -20, 0}, {0, 0, 0}.. etc. The solution can be easily modified to handle this case.
It is similar to Largest Sum Contiguous Subarray problem. The only thing to note here is, maximum product can also be obtained by minimum (negative) product ending with the previous element multiplied by this element. For example, in array {12, 2, -3, -5, -6, -2}, when we are at element -2, the maximum product is multiplication of, minimum product ending with -6 and -2.
C++
// C++ program to find Maximum Product Subarray
#include <bits/stdc++.h>
using namespace std;
/* Returns the product
of max product subarray.
Assumes that the given
array always has a subarray
with product more than 1 */
int maxSubarrayProduct(int arr[], int n)
{
// max positive product
// ending at the current position
int max_ending_here = 1;
// min negative product ending
// at the current position
int min_ending_here = 1;
// Initialize overall max product
int max_so_far = 0;
int flag = 0;
/* Traverse through the array.
Following values are
maintained after the i'th iteration:
max_ending_here is always 1 or
some positive product ending with arr[i]
min_ending_here is always 1 or
some negative product ending with arr[i] */
for (int i = 0; i < n; i++)
{
/* If this element is positive, update
max_ending_here. Update min_ending_here only if
min_ending_here is negative */
if (arr[i] > 0)
{
max_ending_here = max_ending_here * arr[i];
min_ending_here
= min(min_ending_here * arr[i], 1);
flag = 1;
}
/* If this element is 0, then the maximum product
cannot end here, make both max_ending_here and
min_ending_here 0
Assumption: Output is always greater than or equal
to 1. */
else if (arr[i] == 0) {
max_ending_here = 1;
min_ending_here = 1;
}
/* If element is negative. This is tricky
max_ending_here can either be 1 or positive.
min_ending_here can either be 1 or negative.
next max_ending_here will always be prev.
min_ending_here * arr[i] ,next min_ending_here
will be 1 if prev max_ending_here is 1, otherwise
next min_ending_here will be prev max_ending_here *
arr[i] */
else {
int temp = max_ending_here;
max_ending_here
= max(min_ending_here * arr[i], 1);
min_ending_here = temp * arr[i];
}
// update max_so_far, if needed
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
if (flag == 0 && max_so_far == 0)
return 0;
return max_so_far;
}
// Driver code
int main()
{
int arr[] = { 1, -2, -3, 0, 7, -8, -2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Maximum Sub array product is "
<< maxSubarrayProduct(arr, n);
return 0;
}
// This is code is contributed by rathbhupendra
OutputMaximum Sub array product is 112
Time Complexity: O(n)
Auxiliary Space: O(1)
Please refer complete article on Maximum Product Subarray for more details!
Similar Reads
Sum of Max of Subarrays Given an array arr[], the task is to find the sum of the maximum elements of every possible non-empty sub-arrays of the given array arr[].Examples: Input: arr[] = [1, 3, 2]Output: 15Explanation: All possible non-empty subarrays of [1, 3, 2] are {1}, {3}, {2}, {1, 3}, {3, 2} and {1, 3, 2}. The maximu
12 min read
Maximum of XOR of first and second maximum of all subarrays Given an array arr[] of distinct elements, the task is to find the maximum of XOR value of the first and second maximum elements of every possible subarray.Note: Length of the Array is greater than 1. Examples: Input: arr[] = {5, 4, 3} Output: 7 Explanation: All Possible subarrays with length greate
11 min read
Maximum OR value of a pair in an Array | Set 2 Given an array arr[] of N positive elements, the task is to find the maximum bitwise OR value of a pair from the given array.Examples: Input: arr[] = {3, 6, 8, 16} Output: 24 Explanation: The pair giving maximum OR value is (8, 16) 8|16 = 24Input: arr[] = {8, 7, 3, 12} Output: 15 Explanation: There
5 min read
C++ Program to Maximize elements using another array Given two arrays with size n, maximize the first array by using the elements from the second array such that the new array formed contains n greatest but unique elements of both the arrays giving the second array priority (All elements of second array appear before first array). The order of appeara
4 min read
Java Program for Maximum Product Subarray Given an array that contains both positive and negative integers, find the product of the maximum product subarray. Expected Time complexity is O(n) and only O(1) extra space can be used. Examples: Input: arr[] = {6, -3, -10, 0, 2} Output: 180 // The subarray is {6, -3, -10} Input: arr[] = {-1, -3,
5 min read