Count triplets such that product of two numbers added with third number is N
Last Updated :
11 Oct, 2021
Given a positive integer N, the task is to find the number of triplets (A, B, C) where A, B, C are positive integers such that the product of two numbers added with the third number is N i.e., A * B + C = N.
Examples:
Input: N = 3
Output: 3
Explanation:
Following are the possible triplets satisfying the given criteria:
- (1, 1, 2): The value of 1*1 + 2 = 3.
- (1, 2, 1): The value of 1*2 + 1 = 3.
- (2, 1, 1): The value of 2*1 + 1 = 3.
Therefore, the total count of such triplets is 3.
Input: N = 5
Output: 8
Approach: The given problem can be solved by rearranging the equation A * B + C = N as A * B = N - C. Now, the only possible values A and B can have to satisfy the above equation is the divisors of N - C. For Example, if the value of N - C = 18, having 6 divisors that are 1, 2, 3, 6, 9, 18. So, values of A, B satisfying the above equation are: (1, 18), (2, 9), (3, 6), (6, 3), (9, 2), (18, 1). So, for the value of N - C = 18, possible values of A, B are 6, i.e., the number of divisors of N - C(= 18). Follow the steps below to solve the given problem:
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the divisors of
// the number (N - i)
int countDivisors(int n)
{
// Stores the resultant count of
// divisors of (N - i)
int divisors = 0;
int i;
// Iterate over range [1, sqrt(N)]
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
// Return the total divisors
return divisors;
}
// Function to find the number of triplets
// such that A * B - C = N
int possibleTriplets(int N)
{
int count = 0;
// Loop to fix the value of C
for (int i = 1; i < N; i++) {
// Adding the number of
// divisors in count
count += countDivisors(N - i);
}
// Return count of triplets
return count;
}
// Driver Code
int main()
{
int N = 10;
cout << possibleTriplets(N);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG
{
// Function to find the divisors of
// the number (N - i)
static int countDivisors(int n)
{
// Stores the resultant count of
// divisors of (N - i)
int divisors = 0;
int i;
// Iterate over range [1, sqrt(N)]
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
// Return the total divisors
return divisors;
}
// Function to find the number of triplets
// such that A * B - C = N
static int possibleTriplets(int N)
{
int count = 0;
// Loop to fix the value of C
for (int i = 1; i < N; i++) {
// Adding the number of
// divisors in count
count += countDivisors(N - i);
}
// Return count of triplets
return count;
}
// Driver Code
public static void main (String[] args) {
int N = 10;
System.out.println(possibleTriplets(N));
}
}
// This code is contributed by Dharanendra L V.
Python3
# Python program for the above approach
import math
# function to find the divisors of
# the number (N - i)
def countDivisors(n):
# Stores the resultant count of
# divisors of (N - i)
divisors = 0
# Iterate over range [1, sqrt(N)]
for i in range(1, math.ceil(math.sqrt(n))+1):
if n % i == 0:
divisors = divisors+1
if (i - (n / i) == 1):
i = i-1
for i in range(math.ceil(math.sqrt(n))+1, 1, -1):
if (n % i == 0):
divisors = divisors+1
# Return the total divisors
return divisors
# def to find the number of triplets
# such that A * B - C = N
def possibleTriplets(N):
count = 0
# Loop to fix the value of C
for i in range(1, N):
# Adding the number of
# divisors in count
count = count + countDivisors(N - i)
# Return count of triplets
return count
# Driver Code
# Driver Code
if __name__ == "__main__":
N = 10
print(possibleTriplets(N))
# This code is contributed by Potta Lokesh
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to find the divisors of
// the number (N - i)
static int countDivisors(int n)
{
// Stores the resultant count of
// divisors of (N - i)
int divisors = 0;
int i;
// Iterate over range [1, sqrt(N)]
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
// Return the total divisors
return divisors;
}
// Function to find the number of triplets
// such that A * B - C = N
static int possibleTriplets(int N)
{
int count = 0;
// Loop to fix the value of C
for (int i = 1; i < N; i++) {
// Adding the number of
// divisors in count
count += countDivisors(N - i);
}
// Return count of triplets
return count;
}
// Driver Code
public static void Main()
{
int N = 10;
Console.Write(possibleTriplets(N));
}
}
// This code is contributed by SURENDRA_GANGWAR.
JavaScript
<script>
// javascript program for the above approach
// Function to find the divisors of
// the number (N - i)
function countDivisors(n)
{
// Stores the resultant count of
// divisors of (N - i)
var divisors = 0;
var i;
// Iterate over range [1, sqrt(N)]
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
// Return the total divisors
return divisors;
}
// Function to find the number of triplets
// such that A * B - C = N
function possibleTriplets(N)
{
var count = 0;
// Loop to fix the value of C
for (var i = 1; i < N; i++) {
// Adding the number of
// divisors in count
count += countDivisors(N - i);
}
// Return count of triplets
return count;
}
// Driver Code
var N = 10;
document.write(possibleTriplets(N));
// This code is contributed by shikhasingrajput
</script>
Time Complexity: O(N*sqrt(N))
Auxiliary Space: O(1)
Similar Reads
Count of triplets having sum of product of any two numbers with the third number equal to N Given an positive integer N, the task is to find the number of triplets (X, Y, Z) such that the sum of product of any two numbers with the third number is N. Examples: Input: N = 2Output: 1Explanation:The only triplets satisfying the given criteria is (1, 1, 1). Therefore, the count is 1. Input: N =
11 min read
Count number of triplets with product equal to given number | Set 2 Given an array of distinct integers(considering only positive numbers) and a number âmâ, find the number of triplets with the product equal to âmâ. Examples: Input: arr[] = { 1, 4, 6, 2, 3, 8} m = 24 Output: 3 Input: arr[] = { 0, 4, 6, 2, 3, 8} m = 18 Output: 0 An approach with O(n) extra space has
7 min read
Count number of triplets with product equal to given number | Set 2 Given an array of distinct integers(considering only positive numbers) and a number âmâ, find the number of triplets with the product equal to âmâ. Examples: Input: arr[] = { 1, 4, 6, 2, 3, 8} m = 24 Output: 3 Input: arr[] = { 0, 4, 6, 2, 3, 8} m = 18 Output: 0 An approach with O(n) extra space has
7 min read
Count number of triplets with product equal to given number with duplicates allowed | Set-2 Given an array of positive integers(may contain duplicates) and a number âmâ, find the number of unordered triplets ((Ai, Aj, Ak) and (Aj, Ai, Ak) and other permutations are counted as one only) with product equal to âmâ. Examples: Input: arr[] = { 1, 4, 6, 2, 3, 8}, M = 24 Output: 3 The triplets ar
14 min read
Count number of triplets with product equal to given number with duplicates allowed | Set-2 Given an array of positive integers(may contain duplicates) and a number âmâ, find the number of unordered triplets ((Ai, Aj, Ak) and (Aj, Ai, Ak) and other permutations are counted as one only) with product equal to âmâ. Examples: Input: arr[] = { 1, 4, 6, 2, 3, 8}, M = 24 Output: 3 The triplets ar
14 min read
Count number of triplets with product equal to given number Given an array of distinct integers(considering only positive numbers) and a number âmâ, find the number of triplets with product equal to âmâ. Examples: Input : arr[] = { 1, 4, 6, 2, 3, 8} m = 24Output : 3{1, 4, 6} {1, 3, 8} {4, 2, 3} Input : arr[] = { 0, 4, 6, 2, 3, 8} m = 18Output : 0 Asked in :
15+ min read