Open In App

Count the number of Special Strings of a given length N

Last Updated : 24 Apr, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given the length N of the string, we have to find the number of special strings of length N. 
A string is called a special string if it consists only of lowercase letters a and b and there is at least one b between two a’s in the string. Since the number of strings may be very large, therefore print it modulo 10^9+7. 
Examples: 

Input: N = 2 
Output:
Explanation : 
The number of special string so length 2 are 3 i.e. "ab", "ba", "bb"
Input: N = 3 
Output:
Explanation: 
The number of special string so length 3 are 5 i.e. "abb", "aba", "bab", "bba", "bbb" 

Approach:
To solve the problem mentioned above, the first observation is if the integer N is 0 then there can only be an empty string as the answer, if N is 1 then there can be two string "a" or "b" as an answer but if the value of N is greater than 1 then the answer is equal to the sum of previous two terms. Now to find the count of special strings we run a loop and for each integer i count of the special string of length i is equal to the sum of the count of special strings of length i-1 and count of special strings of length i-2. Store the value of each integer in an array and return the required answer.
Below is the implementation of the above approach: 

C++
// C++ Program to Count the number
// of Special Strings of a given length N
#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007

// Function to return count of special strings
long count_special(long n)
{
    // stores the answer for a
    // particular value of n
    long fib[n + 1];

    // for n = 0 we have empty string
    fib[0] = 1;

    // for n = 1 we have
    // 2 special strings
    fib[1] = 2;

    for (int i = 2; i <= n; i++) {

        // calculate count of special string of length i
        fib[i] = (fib[i - 1] % mod + fib[i - 2] % mod) % mod;
    }

    // fib[n] stores the count
    // of special strings of length n
    return fib[n];
}

// Driver code
int main()
{

    // initialise n
    long n = 3;

    cout << count_special(n) << endl;

    return 0;
}
Java
// Java program to count the number of 
// special strings of a given length N
import java.util.*;

class GFG{
    
static final int mod = 1000000007;

// Function to return count of 
// special Strings
static int count_special(int n)
{
    
    // Stores the answer for a
    // particular value of n
    int []fib = new int[n + 1];

    // For n = 0 we have empty String
    fib[0] = 1;

    // For n = 1 we have
    // 2 special Strings
    fib[1] = 2;

    for(int i = 2; i <= n; i++) 
    {
       
       // Calculate count of special 
       // String of length i
       fib[i] = (fib[i - 1] % mod +
                 fib[i - 2] % mod) % mod;
    }

    // fib[n] stores the count of 
    // special Strings of length n
    return fib[n];
}

// Driver code
public static void main(String[] args)
{

    // Initialise n
    int n = 3;

    System.out.print(count_special(n) + "\n");
}
}

// This code is contributed by sapnasingh4991
Python3
# Python3 program to count the number
# of special strings of a given length N
mod = 1000000007

# Function to return count of 
# special strings
def count_special(n):
    
    # Stores the answer for a
    # particular value of n
    fib = [0 for i in range(n + 1)]

    # For n = 0 we have empty string
    fib[0] = 1

    # For n = 1 we have
    # 2 special strings
    fib[1] = 2

    for i in range(2, n + 1, 1):
        
        # Calculate count of special 
        # string of length i
        fib[i] = (fib[i - 1] % mod + 
                  fib[i - 2] % mod) % mod

    # fib[n] stores the count
    # of special strings of length n
    return fib[n]

# Driver code
if __name__ == '__main__':
    
    # Initialise n
    n = 3

    print(count_special(n))

# This code is contributed by Bhupendra_Singh
C#
// C# program to count the number of 
// special strings of a given length N
using System;
class GFG{
    
const int mod = 1000000007;

// Function to return count of 
// special Strings
static int count_special(int n)
{
    
    // Stores the answer for a
    // particular value of n
    int []fib = new int[n + 1];

    // For n = 0 we have empty String
    fib[0] = 1;

    // For n = 1 we have
    // 2 special Strings
    fib[1] = 2;

    for(int i = 2; i <= n; i++) 
    {
        
        // Calculate count of special 
        // String of length i
        fib[i] = (fib[i - 1] % mod +
                  fib[i - 2] % mod) % mod;
    }

    // fib[n] stores the count of 
    // special Strings of length n
    return fib[n];
}

// Driver code
public static void Main()
{

    // Initialise n
    int n = 3;

    Console.Write(count_special(n) + "\n");
}
}

// This code is contributed by Nidhi_biet
JavaScript
<script>
      // JavaScript Program to Count the number
      // of Special Strings of a given length N

      var mod = 1000000007;

      // Function to return count of special strings
      function count_special(n) {
        // stores the answer for a
        // particular value of n
        var fib = [...Array(n + 1)];

        // for n = 0 we have empty string
        fib[0] = 1;

        // for n = 1 we have
        // 2 special strings
        fib[1] = 2;

        for (var i = 2; i <= n; i++) {
          // calculate count of special string of length i
          fib[i] = ((fib[i - 1] % mod) + (fib[i - 2] % mod)) % mod;
        }

        // fib[n] stores the count
        // of special strings of length n
        return fib[n];
      }

      // Driver code
      // initialise n
      var n = 3;
      document.write(count_special(n) + "<br>");
    </script>

Output: 
5

 

Time Complexity: O(n)
Auxiliary Space: O(n)

Efficient Approach: Space optimization using variables.

In previous approach the fib[i] is depend upon fib[i-1] and fib[i-2] So we can optimize space by storing these 2 values in form of variables where prev1 is fib[i-1] and prev2 is determine fib[i-2]  

Implementation Steps:

  • Take variable prev1 and prev2 and initialize then with base cases.
  • Take another variable curr determine the current computation.
  • Iterate over every subproblems and calculate curr from prev1 and prev2.
  • After every iteration update prev1 and prev2 for further computation.
  • At last return the answer stored in curr.

Implementation:

C++
// C++ Program to Count the number
// of Special Strings of a given length N
#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007

// Function to return count of special strings
long count_special(long n)
{
    // stores the answer for a
    // particular value of n
    int curr;
    // for n = 0 we have empty string
    
    int prev1 =1;

    // for n = 1 we have
    // 2 special strings
    int prev2= 2 ;
    
    for (int i = 2; i <= n; i++) {

        // calculate count of special string of length i
        curr = (prev1 % mod + prev2 % mod) % mod;
        prev1 = prev2;
        prev2 = curr;
    }

    // curr stores the count
    // of special strings of length n
    return curr;
}

// Driver code
int main()
{

    // initialise n
    long n = 2;

    cout << count_special(n) << endl;

    return 0;
}
Java
import java.util.*;

public class Main {
    static final long mod = 1000000007;

    // Function to return count of special strings
    static long count_special(long n) {
        // stores the answer for a
        // particular value of n
        long curr = 0;
        // for n = 0 we have empty string
        long prev1 = 1;

        // for n = 1 we have
        // 2 special strings
        long prev2 = 2;

        for (long i = 2; i <= n; i++) {
            // calculate count of special string of length i
            curr = (prev1 % mod + prev2 % mod) % mod;
            prev1 = prev2;
            prev2 = curr;
        }

        // curr stores the count
        // of special strings of length n
        return curr;
    }

    // Driver code
    public static void main(String[] args) {
        // initialise n
        long n = 2;

        System.out.println(count_special(n));
    }
}
Python3
# Python3 Program to Count the number
# of Special Strings of a given length N

mod = 1000000007

# Function to return count of special strings


def count_special(n):
    # stores the answer for a
    # particular value of n
    curr = 0

    # for n = 0 we have empty string
    prev1 = 1

    # for n = 1 we have
    # 2 special strings
    prev2 = 2

    for i in range(2, n+1):
        # calculate count of special string of length i
        curr = (prev1 % mod + prev2 % mod) % mod
        prev1 = prev2
        prev2 = curr

    # curr stores the count
    # of special strings of length n
    return curr


# Driver code
n = 2

print(count_special(n))
C#
using System;

public class GFG
{
    const int Mod = 1000000007;

    // Function to return count of special strings
    static long CountSpecial(long n)
    {
        // stores the answer for a
        // particular value of n
        int curr = 0;

        // for n = 0 we have empty string
        int prev1 = 1;

        // for n = 1 we have 2 special strings
        int prev2 = 2;

        for (int i = 2; i <= n; i++)
        {
            // calculate count of special string of length i
            curr = (prev1 % Mod + prev2 % Mod) % Mod;
            prev1 = prev2;
            prev2 = curr;
        }

        // curr stores the count
        // of special strings of length n
        return curr;
    }

    // Driver code
    public static void Main()
    {
        // initialise n
        long n = 2;

        Console.WriteLine(CountSpecial(n));
    }
}
JavaScript
// Function to return count of special strings
const mod = 1000000007;

function count_special(n) {
    // stores the answer for a
    // particular value of n
    let curr;
    // for n = 0 we have empty string
    let prev1 = 1;
    // for n = 1 we have 2 special strings
    let prev2 = 2;
    
    for (let i = 2; i <= n; i++) {
        // calculate count of special string of length i
        curr = (prev1 % mod + prev2 % mod) % mod;
        prev1 = prev2;
        prev2 = curr;
    }

    // curr stores the count
    // of special strings of length n
    return curr;
}

// Driver code
let n = 2;

console.log(count_special(n));

Output
3

Time Complexity: O(n)
Auxiliary Space: O(1)


Next Article

Similar Reads