Count subarrays for every array element in which they are the minimum
Last Updated :
02 Nov, 2023
Given an array arr[] consisting of N integers, the task is to create an array brr[] of size N where brr[i] represents the count of subarrays in which arr[i] is the smallest element.
Examples:
Input: arr[] = {3, 2, 4}
Output: {1, 3, 1}
Explanation:
For arr[0], there is only one subarray in which 3 is the smallest({3}).
For arr[1], there are three such subarrays where 2 is the smallest({2}, {3, 2}, {2, 4}).
For arr[2], there is only one subarray in which 4 is the smallest({4}).
Input: arr[] = {1, 2, 3, 4, 5}
Output: {5, 4, 3, 2, 1}
Naive Approach: The simplest approach is to generate all subarrays of the given array and while generating the subarray, find the element which is minimum in that subarray and then store the index of that element, then later increment count for that index by 1. Similarly, do this for every subarray
Code-
C++
// C++14 program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to count subarrays for every array element in
//which they are minimum
vector<int> countingSubarray(vector<int> arr, int n)
{
vector<int> ans(n,0);
for(int i=0;i<n;i++){
int temp=i;
for(int j=i;j<n;j++){
if(arr[j]<arr[temp]){temp=j;}
ans[temp]++;
}
}
return ans;
}
// Driver Code
int main()
{
int N = 5;
// Given array arr[]
vector<int> arr = { 3, 2, 4, 1, 5 };
// Function call
auto a = countingSubarray(arr, N);
cout << "[";
int n = a.size() - 1;
for(int i = 0; i < n; i++)
cout << a[i] << ", ";
cout << a[n] << "]";
return 0;
}
Java
import java.util.*;
class Main {
// Function to count subarrays for every array element in
// which they are minimum
static List<Integer> countingSubarray(List<Integer> arr, int n) {
List<Integer> ans = new ArrayList<>(Collections.nCopies(n, 0));
for(int i = 0; i < n; i++) {
int temp = i;
for(int j = i; j < n; j++) {
if(arr.get(j) < arr.get(temp)) {
temp = j;
}
ans.set(temp, ans.get(temp) + 1);
}
}
return ans;
}
// Driver Code
public static void main(String[] args) {
int N = 5;
// Given array arr[]
List<Integer> arr = Arrays.asList(3, 2, 4, 1, 5);
// Function call
List<Integer> a = countingSubarray(arr, N);
System.out.print("[");
int n = a.size() - 1;
for(int i = 0; i < n; i++) {
System.out.print(a.get(i) + ", ");
}
System.out.println(a.get(n) + "]");
}
}
Python3
# Python code addition
# Function to count subarrays for every array element in
# which they are minimum
def countingSubarray(arr, n):
ans = [0] * n
for i in range(n):
temp = i
for j in range(i, n):
if arr[j] < arr[temp]:
temp = j
ans[temp] += 1
return ans
# Driver Code
N = 5
# Given array arr[]
arr = [3, 2, 4, 1, 5]
# Function call
a = countingSubarray(arr, N)
print(a)
# The code is contributed by Arushi Goel.
C#
using System;
using System.Collections.Generic;
class Program
{
// Function to count subarrays for every array element in
// which they are minimum
static List<int> CountingSubarray(List<int> arr, int n)
{
List<int> ans = new List<int>(new int[n]);
for (int i = 0; i < n; i++)
{
int temp = i;
for (int j = i; j < n; j++)
{
if (arr[j] < arr[temp]) temp = j;
ans[temp]++;
}
}
return ans;
}
static void Main()
{
int N = 5;
// Given array arr[]
List<int> arr = new List<int> { 3, 2, 4, 1, 5 };
// Function call
List<int> a = CountingSubarray(arr, N);
Console.Write("[");
int n = a.Count - 1;
for (int i = 0; i < n; i++)
{
Console.Write(a[i] + ", ");
}
Console.Write(a[n] + "]");
}
}
JavaScript
// Javascript code addition
// Function to count subarrays for every array element in
// which they are minimum
function countingSubarray(arr, n) {
let ans = new Array(n).fill(0);
for(let i = 0; i < n; i++) {
let temp = i;
for(let j = i; j < n; j++) {
if(arr[j] < arr[temp]) {
temp = j;
}
ans[temp]++;
}
}
return ans;
}
// Driver Code
let N = 5;
// Given array arr[]
let arr = [3, 2, 4, 1, 5];
// Function call
let a = countingSubarray(arr, N);
console.log(a);
// The code is contributed by Arushi Goel.
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: To optimize the above approach, the idea is to find the boundary index for every element, up to which it is the smallest element. For each element let L and R be the boundary indices on the left and right side respectively up to which arr[i] is the minimum. Therefore, the count of all subarrays can be calculated by:
(L + R + 1)*(R + 1)
Follow the steps below to solve the problem:
- Store all the indices of array elements in a Map.
- Sort the array in increasing order.
- Initialize an array boundary[].
- Iterate over the sorted array arr[] and simply insert the index of that element using Binary Search. Suppose it got inserted at index i, then its left boundary is boundary[i – 1] and its right boundary is boundary[i + 1].
- Now, using the above formula, find the number of subarrays and keep track of that count in the resultant array.
- After completing the above steps, print all the counts stored in the resultant array.
Below is the implementation of the above approach:
C++14
// C++14 program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the boundary of every
// element within which it is minimum
int binaryInsert(vector<int> &boundary, int i)
{
int l = 0;
int r = boundary.size() - 1;
// Perform Binary Search
while (l <= r)
{
// Find mid m
int m = (l + r) / 2;
// Update l
if (boundary[m] < i)
l = m + 1;
// Update r
else
r = m - 1;
}
// Inserting the index
boundary.insert(boundary.begin() + l, i);
return l;
}
// Function to required count subarrays
vector<int> countingSubarray(vector<int> arr, int n)
{
// Stores the indices of element
unordered_map<int, int> index;
for(int i = 0; i < n; i++)
index[arr[i]] = i;
vector<int> boundary = {-1, n};
sort(arr.begin(), arr.end());
// Initialize the output array
vector<int> ans(n, 0);
for(int num : arr)
{
int i = binaryInsert(boundary, index[num]);
// Left boundary, till the
// element is smallest
int l = boundary[i] - boundary[i - 1] - 1;
// Right boundary, till the
// element is smallest
int r = boundary[i + 1] - boundary[i] - 1;
// Calculate the number of subarrays
// based on its boundary
int cnt = l + r + l * r + 1;
// Adding cnt to the ans
ans[index[num]] += cnt;
}
return ans;
}
// Driver Code
int main()
{
int N = 5;
// Given array arr[]
vector<int> arr = { 3, 2, 4, 1, 5 };
// Function call
auto a = countingSubarray(arr, N);
cout << "[";
int n = a.size() - 1;
for(int i = 0; i < n; i++)
cout << a[i] << ", ";
cout << a[n] << "]";
return 0;
}
// This code is contributed by mohit kumar 29
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find the boundary of every
// element within which it is minimum
static int binaryInsert(ArrayList<Integer> boundary,
int i)
{
int l = 0;
int r = boundary.size() - 1;
// Perform Binary Search
while (l <= r)
{
// Find mid m
int m = (l + r) / 2;
// Update l
if (boundary.get(m) < i)
l = m + 1;
// Update r
else
r = m - 1;
}
// Inserting the index
boundary.add(l, i);
return l;
}
// Function to required count subarrays
static int[] countingSubarray(int[] arr,
int n)
{
// Stores the indices of element
Map<Integer, Integer> index = new HashMap<>();
for(int i = 0; i < n; i++)
index.put(arr[i], i);
ArrayList<Integer> boundary = new ArrayList<>();
boundary.add(-1);
boundary.add(n);
Arrays.sort(arr);
// Initialize the output array
int[] ans = new int[n];
for(int num : arr)
{
int i = binaryInsert(boundary,
index.get(num));
// Left boundary, till the
// element is smallest
int l = boundary.get(i) -
boundary.get(i - 1) - 1;
// Right boundary, till the
// element is smallest
int r = boundary.get(i + 1) -
boundary.get(i) - 1;
// Calculate the number of subarrays
// based on its boundary
int cnt = l + r + l * r + 1;
// Adding cnt to the ans
ans[index.get(num)] += cnt;
}
return ans;
}
// Driver code
public static void main (String[] args)
{
int N = 5;
// Given array arr[]
int[] arr = { 3, 2, 4, 1, 5 };
// Function call
int[] a = countingSubarray(arr, N);
System.out.print("[");
int n = a.length - 1;
for(int i = 0; i < n; i++)
System.out.print(a[i] + ", ");
System.out.print(a[n] + "]");
}
}
// This code is contributed by offbeat
Python3
# Python3 program for the above approach
# Function to find the boundary of every
# element within which it is minimum
def binaryInsert(boundary, i):
l = 0
r = len(boundary) - 1
# Perform Binary Search
while l <= r:
# Find mid m
m = (l + r) // 2
# Update l
if boundary[m] < i:
l = m + 1
# Update r
else:
r = m - 1
# Inserting the index
boundary.insert(l, i)
return l
# Function to required count subarrays
def countingSubarray(arr, n):
# Stores the indices of element
index = {}
for i in range(n):
index[arr[i]] = i
boundary = [-1, n]
arr.sort()
# Initialize the output array
ans = [0 for i in range(n)]
for num in arr:
i = binaryInsert(boundary, index[num])
# Left boundary, till the
# element is smallest
l = boundary[i] - boundary[i - 1] - 1
# Right boundary, till the
# element is smallest
r = boundary[i + 1] - boundary[i] - 1
# Calculate the number of subarrays
# based on its boundary
cnt = l + r + l * r + 1
# Adding cnt to the ans
ans[index[num]] += cnt
return ans
# Driver Code
N = 5
# Given array arr[]
arr = [3, 2, 4, 1, 5]
# Function Call
print(countingSubarray(arr, N))
C#
// C# program for
// the above approach
using System;
using System.Collections;
using System.Collections.Generic;
class GFG{
// Function to find the
// boundary of every element
// within which it is minimum
static int binaryInsert(ArrayList boundary,
int i)
{
int l = 0;
int r = boundary.Count - 1;
// Perform Binary Search
while (l <= r)
{
// Find mid m
int m = (l + r) / 2;
// Update l
if ((int)boundary[m] < i)
l = m + 1;
// Update r
else
r = m - 1;
}
// Inserting the index
boundary.Insert(l, i);
return l;
}
// Function to required count subarrays
static int[] countingSubarray(int[] arr,
int n)
{
// Stores the indices of element
Dictionary<int,
int> index = new Dictionary<int,
int>();
for(int i = 0; i < n; i++)
index[arr[i]] = i;
ArrayList boundary = new ArrayList();
boundary.Add(-1);
boundary.Add(n);
Array.Sort(arr);
// Initialize the output array
int[] ans = new int[n];
foreach(int num in arr)
{
int i = binaryInsert(boundary,
index[num]);
// Left boundary, till the
// element is smallest
int l = (int)boundary[i] -
(int)boundary[i - 1] - 1;
// Right boundary, till the
// element is smallest
int r = (int)boundary[i + 1] -
(int)boundary[i] - 1;
// Calculate the number of
// subarrays based on its boundary
int cnt = l + r + l * r + 1;
// Adding cnt to the ans
ans[index[num]] += cnt;
}
return ans;
}
// Driver code
public static void Main(string[] args)
{
int N = 5;
// Given array arr[]
int[] arr = {3, 2, 4, 1, 5};
// Function call
int[] a = countingSubarray(arr, N);
Console.Write("[");
int n = a.Length - 1;
for(int i = 0; i < n; i++)
Console.Write(a[i] + ", ");
Console.Write(a[n] + "]");
}
}
// This code is contributed by Rutvik_56
JavaScript
<script>
// JavaScript program for the above approach
// Function to find the boundary of every
// element within which it is minimum
function binaryInsert(boundary, i){
let l = 0
let r = boundary.length - 1
// Perform Binary Search
while(l <= r){
// Find mid m
let m = Math.floor((l + r) / 2)
// Update l
if(boundary[m] < i)
l = m + 1
// Update r
else
r = m - 1
}
// Inserting the index
boundary.splice(l,0, i)
return l
}
// Function to required count subarrays
function countingSubarray(arr, n){
// Stores the indices of element
let index = new Map()
for(let i=0;i<n;i++)
index.set(arr[i] , i)
let boundary = [-1, n]
arr.sort()
// Initialize the output array
let ans = new Array(n).fill(0)
for(let num of arr){
let i = binaryInsert(boundary, index.get(num))
// Left boundary, till the
// element is smallest
let l = boundary[i] - boundary[i - 1] - 1
// Right boundary, till the
// element is smallest
let r = boundary[i + 1] - boundary[i] - 1
// Calculate the number of subarrays
// based on its boundary
let cnt = l + r + l * r + 1
// Adding cnt to the ans
ans[index.get(num)] += cnt
}
return ans
}
// Driver Code
let N = 5
// Given array arr[]
let arr = [3, 2, 4, 1, 5]
// Function Call
document.write(countingSubarray(arr, N),"</br>")
// This code is contributed by shinjanpatra.
</script>
Time Complexity: O(N log N)
Auxiliary Space: O(N)
Most efficient approach:
To optimize the above approach we can use a Stack Data Structure.
- Idea is that, For each (1? i ? N) we will try to find index(R) of next smaller element right to it and index(L) of next smaller element left to it.
- Now we have our boundary index(L,R) in which arr[i] is minimum so total number of subarrays for each i(0-base) will be (R-i)*(i-L) .
Below is the implementation of the idea:
C++14
// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to required count subarrays
vector<int> countingSubarray(vector<int> arr, int n)
{
// For storing count of subarrays
vector<int> a(n);
// For finding next smaller
// element left to a element
// if there is no next smaller
// element left to it than taking -1.
vector<int> nsml(n, -1);
// For finding next smaller
// element right to a element
// if there is no next smaller
// element right to it than taking n.
vector<int> nsmr(n, n);
stack<int> st;
for (int i = n - 1; i >= 0; i--)
{
while (!st.empty() && arr[st.top()] >= arr[i])
st.pop();
nsmr[i] = (!st.empty()) ? st.top() : n;
st.push(i);
}
while (!st.empty())
st.pop();
for (int i = 0; i < n; i++)
{
while (!st.empty() && arr[st.top()] >= arr[i])
st.pop();
nsml[i] = (!st.empty()) ? st.top() : -1;
st.push(i);
}
for (int i = 0; i < n; i++)
{
// Taking exact boundaries
// in which arr[i] is
// minimum
nsml[i]++;
// Similarly for right side
nsmr[i]--;
int r = nsmr[i] - i + 1;
int l = i - nsml[i] + 1;
a[i] = r * l;
}
return a;
}
// Driver Code
int main()
{
int N = 5;
// Given array arr[]
vector<int> arr = { 3, 2, 4, 1, 5 };
// Function call
auto a = countingSubarray(arr, N);
cout << "[";
int n = a.size() - 1;
for (int i = 0; i < n; i++)
cout << a[i] << ", ";
cout << a[n] << "]";
return 0;
}
Java
// Java implementation of the above approach
import java.util.*;
public class gfg
{
// Function to required count subarrays
static int[] countingSubarray(int arr[], int n)
{
// For storing count of subarrays
int a[] = new int[n];
// For finding next smaller
// element left to a element
// if there is no next smaller
// element left to it than taking -1.
int nsml[] = new int[n];
Arrays.fill(nsml, -1);
// For finding next smaller
// element right to a element
// if there is no next smaller
// element right to it than taking n.
int nsmr[] = new int[n];
Arrays.fill(nsmr, n);
Stack<Integer> st = new Stack<Integer>();
for(int i = n - 1; i >= 0; i--)
{
while (st.size() > 0 &&
arr[(int)st.peek()] >= arr[i])
st.pop();
nsmr[i] = (st.size() > 0) ? (int)st.peek() : n;
st.push(i);
}
while (st.size() > 0)
st.pop();
for(int i = 0; i < n; i++)
{
while (st.size() > 0 &&
arr[(int)st.peek()] >= arr[i])
st.pop();
nsml[i] = (st.size() > 0) ? (int)st.peek() : -1;
st.push(i);
}
for(int i = 0; i < n; i++)
{
// Taking exact boundaries
// in which arr[i] is
// minimum
nsml[i]++;
// Similarly for right side
nsmr[i]--;
int r = nsmr[i] - i + 1;
int l = i - nsml[i] + 1;
a[i] = r * l;
}
return a;
}
// Driver code
public static void main(String[] args)
{
int N = 5;
// Given array arr[]
int arr[] = { 3, 2, 4, 1, 5 };
// Function call
int a[] = countingSubarray(arr, N);
System.out.print("[");
int n = a.length - 1;
for(int i = 0; i < n; i++)
System.out.print(a[i] + ", ");
System.out.print(a[n] + "]");
}
}
// This code is contributed by divyesh072019.
Python3
# Python implementation of the above approach
# Function to required count subarrays
def countingSubarray(arr, n):
# For storing count of subarrays
a = [0 for i in range(n)]
# For finding next smaller
# element left to a element
# if there is no next smaller
# element left to it than taking -1.
nsml = [-1 for i in range(n)]
# For finding next smaller
# element right to a element
# if there is no next smaller
# element right to it than taking n.
nsmr = [n for i in range(n)]
st = []
for i in range(n - 1, -1, -1):
while(len(st) > 0 and arr[st[-1]] >= arr[i]):
del st[-1]
if(len(st) > 0):
nsmr[i] = st[-1]
else:
nsmr[i] = n
st.append(i)
while(len(st) > 0):
del st[-1]
for i in range(n):
while(len(st) > 0 and arr[st[-1]] >= arr[i]):
del st[-1]
if(len(st) > 0):
nsml[i] = st[-1]
else:
nsml[i] = -1
st.append(i)
for i in range(n):
# Taking exact boundaries
# in which arr[i] is
# minimum
nsml[i] += 1
# Similarly for right side
nsmr[i] -= 1
r = nsmr[i] - i + 1;
l = i - nsml[i] + 1;
a[i] = r * l;
return a;
# Driver code
N = 5
# Given array arr[]
arr = [3, 2, 4, 1, 5 ]
# Function call
a = countingSubarray(arr, N)
print(a)
# This code is contributed by rag2127
C#
// C# implementation of the above approach
using System;
using System.Collections;
class GFG{
// Function to required count subarrays
static int[] countingSubarray(int[] arr, int n)
{
// For storing count of subarrays
int[] a = new int[n];
// For finding next smaller
// element left to a element
// if there is no next smaller
// element left to it than taking -1.
int[] nsml = new int[n];
Array.Fill(nsml, -1);
// For finding next smaller
// element right to a element
// if there is no next smaller
// element right to it than taking n.
int[] nsmr = new int[n];
Array.Fill(nsmr, n);
Stack st = new Stack();
for(int i = n - 1; i >= 0; i--)
{
while (st.Count > 0 &&
arr[(int)st.Peek()] >= arr[i])
st.Pop();
nsmr[i] = (st.Count > 0) ? (int)st.Peek() : n;
st.Push(i);
}
while (st.Count > 0)
st.Pop();
for(int i = 0; i < n; i++)
{
while (st.Count > 0 &&
arr[(int)st.Peek()] >= arr[i])
st.Pop();
nsml[i] = (st.Count > 0) ? (int)st.Peek() : -1;
st.Push(i);
}
for(int i = 0; i < n; i++)
{
// Taking exact boundaries
// in which arr[i] is
// minimum
nsml[i]++;
// Similarly for right side
nsmr[i]--;
int r = nsmr[i] - i + 1;
int l = i - nsml[i] + 1;
a[i] = r * l;
}
return a;
}
// Driver code
static void Main()
{
int N = 5;
// Given array arr[]
int[] arr = { 3, 2, 4, 1, 5 };
// Function call
int[] a = countingSubarray(arr, N);
Console.Write("[");
int n = a.Length - 1;
for(int i = 0; i < n; i++)
Console.Write(a[i] + ", ");
Console.Write(a[n] + "]");
}
}
// This code is contributed by divyeshrabadiya07
JavaScript
<script>
// Javascript implementation of the above approach
// Function to required count subarrays
function countingSubarray(arr, n)
{
// For storing count of subarrays
let a = new Array(n);
// For finding next smaller
// element left to a element
// if there is no next smaller
// element left to it than taking -1.
let nsml = new Array(n);
nsml.fill(-1);
// For finding next smaller
// element right to a element
// if there is no next smaller
// element right to it than taking n.
let nsmr = new Array(n);
nsmr.fill(n);
let st = [];
for(let i = n - 1; i >= 0; i--)
{
while (st.length > 0 && arr[st[st.length-1]] >= arr[i])
st.pop();
nsmr[i] = (st.length > 0) ? st[st.length-1] : n;
st.push(i);
}
while (st.length > 0)
st.pop();
for(let i = 0; i < n; i++)
{
while (st.length > 0 &&
arr[st[st.length-1]] >= arr[i])
st.pop();
nsml[i] = (st.length > 0) ? st[st.length-1] : -1;
st.push(i);
}
for(let i = 0; i < n; i++)
{
// Taking exact boundaries
// in which arr[i] is
// minimum
nsml[i]++;
// Similarly for right side
nsmr[i]--;
let r = nsmr[i] - i + 1;
let l = i - nsml[i] + 1;
a[i] = r * l;
}
return a;
}
let N = 5;
// Given array arr[]
let arr = [ 3, 2, 4, 1, 5 ];
// Function call
let a = countingSubarray(arr, N);
document.write("[");
let n = a.length - 1;
for(let i = 0; i < n; i++)
document.write(a[i] + ", ");
document.write(a[n] + "]");
// This code is contributed by rameshtravel07.
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Count subarrays for every array element in which they are the minimum | Set 2
Given an array arr[] consisting of N integers, the task is to create an array brr[] of size N where brr[i] represents the count of subarrays in which arr[i] is the smallest element. Examples: Input: arr[] = {3, 2, 4}Output: {1, 3, 1}Explanation: For arr[0], there is only one subarray in which 3 is t
12 min read
Count of elements which is the sum of a subarray of the given Array
Given an array arr[], the task is to count elements in an array such that there exists a subarray whose sum is equal to this element.Note: Length of subarray must be greater than 1. Examples: Input: arr[] = {1, 2, 3, 4, 5, 6, 7} Output: 4 Explanation: There are 4 such elements in array - arr[2] = 3
7 min read
Count subarrays which contains both the maximum and minimum array element
Given an array arr[] consisting of N distinct integers, the task is to find the number of subarrays which contains both the maximum and the minimum element from the given array. Examples: Input: arr[] = {1, 2, 3, 4}Output: 1 Explanation: Only a single subarray {1, 2, 3, 4} consists of both the maxim
11 min read
Count of subarrays which forms a permutation from given Array elements
Given an array A[] consisting of integers [1, N], the task is to count the total number of subarrays of all possible lengths x (1 ? x ? N), consisting of a permutation of integers [1, x] from the given array. Examples: Input: A[] = {3, 1, 2, 5, 4} Output: 4 Explanation: Subarrays forming a permutati
6 min read
Count of Subarrays whose first element is the minimum
Given an array arr[] of size N, the task is to find the number of subarrays whose first element is not greater than other elements of the subarray. Examples: Input: arr = {1, 2, 1}Output: 5Explanation: All subarray are: {1}, {1, 2}, {1, 2, 1}, {2}, {2, 1}, {1}From above subarray the following meets
10 min read
Count pairs from an array having GCD equal to the minimum element in the pair
Given an array arr[] consisting of N integers, the task is to find the number of pairs such that the GCD of any pair of array elements is the minimum element of that pair. Examples: Input: arr[ ] = {2, 3, 1, 2}Output: 4Explanation:Below are the all possible pairs from the given array: (0, 1): The GC
13 min read
Count of subarrays for each Array element in which arr[i] is first and least
Given an array arr[], the task is to find the count of subarrays starting from the current element that has a minimum element as the current element itself. Examples: Input: arr[] = {2, 4, 2, 1, 3} Output: {3, 1, 1, 2, 1}Explanation: For the first element we can form 3 valid subarrays with the given
11 min read
Count subsequences which contains both the maximum and minimum array element
Given an array arr[] consisting of N integers, the task is to find the number of subsequences which contain the maximum as well as the minimum element present in the given array. Example : Input: arr[] = {1, 2, 3, 4}Output: 4Explanation: There are 4 subsequence {1, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3
6 min read
Count sub-arrays which have elements less than or equal to X
Given an array of n elements and an integer X. Count the number of sub-arrays of this array which have all elements less than or equal to X. Examples: Input : arr[] = {1, 5, 7, 8, 2, 3, 9} X = 6 Output : 6 Explanation : Sub-arrays are {1}, {5}, {2}, {3}, {1, 5}, {2, 3} Input : arr[] = {1, 10, 12, 4,
15 min read
Count the subarray with sum strictly greater than the sum of remaining elements
Given an array arr[] of N positive integers, the task is to count all the subarrays where the sum of subarray elements is strictly greater than the sum of remaining elements. Examples: Input: arr[] = {1, 2, 3, 4, 5} Output: 6 Explanation: Subarrays are: {1, 2, 3, 4} - sum of subarray = 10, sum of re
12 min read