Count subarrays with equal number of 1's and 0's
Last Updated :
29 Nov, 2023
Given an array arr[] of size n containing 0 and 1 only. The problem is to count the subarrays having an equal number of 0's and 1's.
Examples:
Input: arr[] = {1, 0, 0, 1, 0, 1, 1}
Output: 8
Explanation: The index range for the 8 sub-arrays are: (0, 1), (2, 3), (0, 3), (3, 4), (4, 5)(2, 5), (0, 5), (1, 6)
Input: arr = { 1, 0, 0, 1, 1, 0, 0, 1}
Output: 12
Count subarrays with equal number of 1's and 0's using Frequency Counting:
The problem is closely related to the Largest subarray with an equal number of 0's and 1's
Follow the steps below to implement the above idea:
- Consider all 0's in arr[] as -1.
- Create a hash table that holds the count of each sum[i] value, where sum[i] = sum(arr[0]+..+arr[i]), for i = 0 to n-1.
- Now start calculating the cumulative sum and then we get an incremental count of 1 for that sum represented as an index in the hash table. Arrays of each pair of positions with the same value in the cumulative sum constitute a continuous range with an equal number of 1's and 0's.
- Now traverse the hash table and get the frequency of each element in the hash table. Let frequency be denoted as freq. For each freq > 1 we can choose any two pairs of indices of a sub-array by (freq * (freq – 1)) / 2 number of ways. Do the same for all freq and sum up the result will be the number of all possible sub-arrays containing the equal number of 1's and 0's.
- Also, add freq of the sum of 0 to the hash table for the final result.
Explanation:
Considering all 0’s as -1. if sum[i] == sum[j], where sum[i] = sum(arr[0]+..+arr[i]) and sum[j] = sum(arr[0]+..+arr[j]) and ‘i’ is less than ‘j’, then sum(arr[i+1]+..+arr[j]) must be 0. It can only be 0 if arr(i+1, .., j) contains an equal number of 1’s and 0’s.
Follow the steps below to implement the above approach:
C++
// C++ implementation to count subarrays with
// equal number of 1's and 0's
#include <bits/stdc++.h>
using namespace std;
// function to count subarrays with
// equal number of 1's and 0's
int countSubarrWithEqualZeroAndOne(int arr[], int n)
{
// 'um' implemented as hash table to store
// frequency of values obtained through
// cumulative sum
unordered_map<int, int> um;
int curr_sum = 0;
// Traverse original array and compute cumulative
// sum and increase count by 1 for this sum
// in 'um'. Adds '-1' when arr[i] == 0
for (int i = 0; i < n; i++) {
curr_sum += (arr[i] == 0) ? -1 : arr[i];
um[curr_sum]++;
}
int count = 0;
// traverse the hash table 'um'
for (auto itr = um.begin(); itr != um.end(); itr++) {
// If there are more than one prefix subarrays
// with a particular sum
if (itr->second > 1)
count
+= ((itr->second * (itr->second - 1)) / 2);
}
// add the subarrays starting from 1st element and
// have equal number of 1's and 0's
if (um.find(0) != um.end())
count += um[0];
// required count of subarrays
return count;
}
// Driver program to test above
int main()
{
int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Count = "
<< countSubarrWithEqualZeroAndOne(arr, n);
return 0;
}
Java
// Java implementation to count subarrays with
// equal number of 1's and 0's
import java.util.*;
class GFG {
// function to count subarrays with
// equal number of 1's and 0's
static int countSubarrWithEqualZeroAndOne(int arr[],
int n)
{
// 'um' implemented as hash table to store
// frequency of values obtained through
// cumulative sum
Map<Integer, Integer> um = new HashMap<>();
int curr_sum = 0;
// Traverse original array and compute cumulative
// sum and increase count by 1 for this sum
// in 'um'. Adds '-1' when arr[i] == 0
for (int i = 0; i < n; i++) {
curr_sum += (arr[i] == 0) ? -1 : arr[i];
um.put(curr_sum, um.get(curr_sum) == null
? 1
: um.get(curr_sum) + 1);
}
int count = 0;
// traverse the hash table 'um'
for (Map.Entry<Integer, Integer> itr :
um.entrySet()) {
// If there are more than one prefix subarrays
// with a particular sum
if (itr.getValue() > 1)
count += ((itr.getValue()
* (itr.getValue() - 1))
/ 2);
}
// add the subarrays starting from 1st element and
// have equal number of 1's and 0's
if (um.containsKey(0))
count += um.get(0);
// required count of subarrays
return count;
}
// Driver program to test above
public static void main(String[] args)
{
int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
int n = arr.length;
System.out.println(
"Count = "
+ countSubarrWithEqualZeroAndOne(arr, n));
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 implementation to count
# subarrays with equal number
# of 1's and 0's
# function to count subarrays with
# equal number of 1's and 0's
def countSubarrWithEqualZeroAndOne(arr, n):
# 'um' implemented as hash table
# to store frequency of values
# obtained through cumulative sum
um = dict()
curr_sum = 0
# Traverse original array and compute
# cumulative sum and increase count
# by 1 for this sum in 'um'.
# Adds '-1' when arr[i] == 0
for i in range(n):
curr_sum += (-1 if (arr[i] == 0) else arr[i])
if um.get(curr_sum):
um[curr_sum] += 1
else:
um[curr_sum] = 1
count = 0
# traverse the hash table 'um'
for itr in um:
# If there are more than one
# prefix subarrays with a
# particular sum
if um[itr] > 1:
count += ((um[itr] * int(um[itr] - 1)) / 2)
# add the subarrays starting from
# 1st element and have equal
# number of 1's and 0's
if um.get(0):
count += um[0]
# required count of subarrays
return int(count)
# Driver code to test above
arr = [1, 0, 0, 1, 0, 1, 1]
n = len(arr)
print("Count =",
countSubarrWithEqualZeroAndOne(arr, n))
# This code is contributed by "Sharad_Bhardwaj".
C#
// C# implementation to count subarrays
// with equal number of 1's and 0's
using System;
using System.Collections.Generic;
class GFG {
// function to count subarrays with
// equal number of 1's and 0's
static int countSubarrWithEqualZeroAndOne(int[] arr,
int n)
{
// 'um' implemented as hash table to store
// frequency of values obtained through
// cumulative sum
Dictionary<int, int> mp
= new Dictionary<int, int>();
int curr_sum = 0;
// Traverse original array and compute cumulative
// sum and increase count by 1 for this sum
// in 'um'. Adds '-1' when arr[i] == 0
for (int i = 0; i < n; i++) {
curr_sum += (arr[i] == 0) ? -1 : arr[i];
if (mp.ContainsKey(curr_sum)) {
var v = mp[curr_sum];
mp.Remove(curr_sum);
mp.Add(curr_sum, ++v);
}
else
mp.Add(curr_sum, 1);
}
int count = 0;
// traverse the hash table 'um'
foreach(KeyValuePair<int, int> itr in mp)
{
// If there are more than one prefix subarrays
// with a particular sum
if (itr.Value > 1)
count
+= ((itr.Value * (itr.Value - 1)) / 2);
}
// add the subarrays starting from 1st element
// and have equal number of 1's and 0's
if (mp.ContainsKey(0))
count += mp[0];
// required count of subarrays
return count;
}
// Driver program to test above
public static void Main(String[] args)
{
int[] arr = { 1, 0, 0, 1, 0, 1, 1 };
int n = arr.Length;
Console.WriteLine(
"Count = "
+ countSubarrWithEqualZeroAndOne(arr, n));
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// Javascript implementation to count subarrays with
// equal number of 1's and 0's
// function to count subarrays with
// equal number of 1's and 0's
function countSubarrWithEqualZeroAndOne(arr, n)
{
// 'um' implemented as hash table to store
// frequency of values obtained through
// cumulative sum
var um = new Map();
var curr_sum = 0;
// Traverse original array and compute cumulative
// sum and increase count by 1 for this sum
// in 'um'. Adds '-1' when arr[i] == 0
for (var i = 0; i < n; i++) {
curr_sum += (arr[i] == 0) ? -1 : arr[i];
if(um.has(curr_sum))
um.set(curr_sum, um.get(curr_sum)+1);
else
um.set(curr_sum, 1)
}
var count = 0;
// traverse the hash table 'um'
um.forEach((value, key) => {
// If there are more than one prefix subarrays
// with a particular sum
if (value > 1)
count += ((value * (value - 1)) / 2);
});
// add the subarrays starting from 1st element and
// have equal number of 1's and 0's
if (um.has(0))
count += um.get(0);
// required count of subarrays
return count;
}
// Driver program to test above
var arr = [1, 0, 0, 1, 0, 1, 1];
var n = arr.length;
document.write( "Count = "
+ countSubarrWithEqualZeroAndOne(arr, n));
// This code is contributed by noob2000.
</script>
PHP
<?php
// Php program for the above approach
// Function to count subarrays with equal number of 1's and 0's
function countSubarrWithEqualZeroAndOne($arr, $n) {
// 'um' implemented as hash table to store
// frequency of values obtained through
// cumulative sum
$um = array();
$curr_sum = 0;
// Traverse original array and compute cumulative
// sum and increase count by 1 for this sum
// in 'um'. Adds '-1' when $arr[$i] == 0
for ($i = 0; $i < $n; $i++) {
$curr_sum += ($arr[$i] == 0) ? -1 : $arr[$i];
$um[$curr_sum]++;
}
$count = 0;
// Traverse the hash table 'um'
foreach ($um as $value) {
// If there are more than one prefix subarrays
// with a particular sum
if ($value > 1) {
$count += (($value * ($value - 1)) / 2);
}
}
// Add the subarrays starting from 1st element and
// have an equal number of 1's and 0's
if (array_key_exists(0, $um)) {
$count += $um[0];
}
// Required count of subarrays
return $count;
}
// Driver program to test above
$arr = array(1, 0, 0, 1, 0, 1, 1);
$n = count($arr);
echo "Count = " . countSubarrWithEqualZeroAndOne($arr, $n);
?>
Time Complexity: O(N), where N is the length of the given array
Auxiliary Space: O(N).
Count subarrays with equal number of 1's and 0's using Map:
Follow the steps below for implementation:
- Create a map say mp.
- Iterate over the length of the given array
- Check if arr[i] == 0, then replace it with -1.
- Keep calculating the number into sum till ith index.
- If sum = 0, it implies the number of 0's and 1's are equal from arr[0]..arr[i]
- if mp[sum] exists then add "frequency-1" to count
- if the frequency of "sum" is zero then we initialize that frequency to 1, f it's not 0, we increment it
- Finally, return the count.
Follow the steps below to implement the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countSubarrWithEqualZeroAndOne(int arr[], int n)
{
unordered_map<int, int> mp;
int sum = 0;
int count = 0;
for (int i = 0; i < n; i++) {
// Replacing 0's in array with -1
if (arr[i] == 0)
arr[i] = -1;
sum += arr[i];
// If sum = 0, it implies number of 0's and 1's are
// equal from arr[0]..arr[i]
if (sum == 0)
count++;
// if mp[sum] exists then add "frequency-1" to count
if (mp[sum])
count += mp[sum];
// if frequency of "sum" is zero then we initialize
// that frequency to 1 if its not 0, we increment it
if (mp[sum] == 0)
mp[sum] = 1;
else
mp[sum]++;
}
return count;
}
int main()
{
int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "count="
<< countSubarrWithEqualZeroAndOne(arr, n);
}
Java
import java.util.HashMap;
import java.util.Map;
// Java implementation to count subarrays with
// equal number of 1's and 0's
public class Main {
// Function that returns count of sub arrays
// with equal numbers of 1's and 0's
static int countSubarrWithEqualZeroAndOne(int[] arr,
int n)
{
Map<Integer, Integer> myMap = new HashMap<>();
int sum = 0;
int count = 0;
for (int i = 0; i < n; i++) {
// Replacing 0's in array with -1
if (arr[i] == 0)
arr[i] = -1;
sum += arr[i];
// If sum = 0, it implies number of 0's and 1's
// are equal from arr[0]..arr[i]
if (sum == 0)
count++;
if (myMap.containsKey(sum))
count += myMap.get(sum);
if (!myMap.containsKey(sum))
myMap.put(sum, 1);
else
myMap.put(sum, myMap.get(sum) + 1);
}
return count;
}
// main function
public static void main(String[] args)
{
int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
int n = arr.length;
System.out.println(
"Count = "
+ countSubarrWithEqualZeroAndOne(arr, n));
}
}
Python3
# Python3 implementation to count subarrays
# with equal number of 1's and 0's
def countSubarrWithEqualZeroAndOne(arr, n):
mp = dict()
Sum = 0
count = 0
for i in range(n):
# Replacing 0's in array with -1
if (arr[i] == 0):
arr[i] = -1
Sum += arr[i]
# If Sum = 0, it implies number of
# 0's and 1's are equal from arr[0]..arr[i]
if (Sum == 0):
count += 1
if (Sum in mp.keys()):
count += mp[Sum]
mp[Sum] = mp.get(Sum, 0) + 1
return count
# Driver Code
arr = [1, 0, 0, 1, 0, 1, 1]
n = len(arr)
print("count =",
countSubarrWithEqualZeroAndOne(arr, n))
# This code is contributed by mohit kumar
C#
// C# implementation to count subarrays with
// equal number of 1's and 0's
using System;
using System.Collections.Generic;
class GFG {
// Function that returns count of sub arrays
// with equal numbers of 1's and 0's
static int countSubarrWithEqualZeroAndOne(int[] arr,
int n)
{
Dictionary<int, int> myMap
= new Dictionary<int, int>();
int sum = 0;
int count = 0;
for (int i = 0; i < n; i++) {
// Replacing 0's in array with -1
if (arr[i] == 0)
arr[i] = -1;
sum += arr[i];
// If sum = 0, it implies number of 0's and 1's
// are equal from arr[0]..arr[i]
if (sum == 0)
count++;
if (myMap.ContainsKey(sum))
count += myMap[sum];
if (!myMap.ContainsKey(sum))
myMap.Add(sum, 1);
else {
var v = myMap[sum] + 1;
myMap.Remove(sum);
myMap.Add(sum, v);
}
}
return count;
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { 1, 0, 0, 1, 0, 1, 1 };
int n = arr.Length;
Console.WriteLine(
"Count = "
+ countSubarrWithEqualZeroAndOne(arr, n));
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript implementation to count subarrays with
// equal number of 1's and 0's
function countSubarrWithEqualZeroAndOne(arr, n)
{
var mp = new Map();
var sum = 0;
let count = 0;
for (var i = 0; i < n; i++) {
//Replacing 0's in array with -1
if (arr[i] == 0)
arr[i] = -1;
sum += arr[i];
//If sum = 0, it implies number of 0's and 1's are
//equal from arr[0]..arr[i]
if (sum == 0)
count += 1;
if (mp.has(sum) == true)
count += mp.get(sum);
if(mp.has(sum) == false)
mp.set(sum, 1);
else
mp.set(sum, mp.get(sum)+1);
}
return count;
}
// Driver program to test above
var arr = [1, 0, 0, 1, 0, 1, 1];
var n = arr.length;
document.write( "Count = "
+ countSubarrWithEqualZeroAndOne(arr, n));
// This code is contributed by noob2000.
</script>
PHP
<?php
//Php code for the above approach
// Function to count subarrays with equal number of 1's and 0's
function countSubarrWithEqualZeroAndOne($arr, $n) {
// Initialize an associative array to store the cumulative sum frequencies
$mp = array();
$sum = 0;
$count = 0;
// Traverse the array
for ($i = 0; $i < $n; $i++) {
// Replacing 0's in the array with -1
if ($arr[$i] == 0) {
$arr[$i] = -1;
}
$sum += $arr[$i];
// If sum = 0, it implies the number of 0's and 1's are
// equal from $arr[0]..$arr[$i]
if ($sum == 0) {
$count++;
}
// If $mp[$sum] exists, then add "frequency-1" to count
if (isset($mp[$sum])) {
$count += $mp[$sum];
}
// If frequency of $sum is zero, then initialize that frequency to 1,
// if it's not zero, increment it
if (!isset($mp[$sum])) {
$mp[$sum] = 1;
} else {
$mp[$sum]++;
}
}
// Return the final count of subarrays
return $count;
}
// Driver program to test above
$arr = array(1, 0, 0, 1, 0, 1, 1);
$n = count($arr);
echo "Count = " . countSubarrWithEqualZeroAndOne($arr, $n);
?>
Time Complexity: O(N), where N is the length of the given array
Auxiliary Space: O(N).
Similar Reads
Count Substrings with equal number of 0s, 1s and 2s
Given a string that consists of only 0s, 1s and 2s, count the number of substrings that have an equal number of 0s, 1s, and 2s.Examples: Input: str = â0102010âOutput: 2Explanation: Substring str[2, 4] = â102â and substring str[4, 6] = â201â has equal number of 0, 1 and 2Input: str = "102100211"Outpu
9 min read
Longest Subarray With Equal Number of 0s and 1s
Given an array arr[] containing only 0s and 1s, find the longest subarray which contains equal no of 0s and 1s.Examples: Input: arr[] = [1, 0, 1, 1, 1, 0, 0]Output: 6Explanation: arr[1 ... 6] is the longest subarray with three 0s and three 1s.Input: arr[] = [0, 0, 1, 1, 0]Output: 4Explanation: arr[0
10 min read
Count Substrings with number of 0s and 1s in ratio of X : Y
Given a binary string S, the task is to count the substrings having the number of 0s and 1s in the ratio of X : Y Examples: Input: S = "010011010100", X = 3, Y = 2Output: 5Explanation: The index range for the 5 substrings are: (0, 4), (2, 6), (6, 10), (7, 11), (2, 11) Input: S = "10010101", X = 1, Y
7 min read
Count subarrays with same even and odd elements
Given an array of N integers, count number of even-odd subarrays. An even - odd subarray is a subarray that contains the same number of even as well as odd integers. Examples : Input : arr[] = {2, 5, 7, 8} Output : 3 Explanation : There are total 3 even-odd subarrays. 1) {2, 5} 2) {7, 8} 3) {2, 5, 7
15+ min read
Number of subarrays for which product and sum are equal
Given a array of n numbers. We need to count the number of subarrays having the product and sum of elements are equal Examples: Input : arr[] = {1, 3, 2} Output : 4 The subarrays are : [0, 0] sum = 1, product = 1, [1, 1] sum = 3, product = 3, [2, 2] sum = 2, product = 2 and [0, 2] sum = 1+3+2=6, pro
5 min read
Count of sub-strings with equal consecutive 0's and 1's
Given binary string str of 0's and 1's only. The task is to count the total number of substrings of string str such that each substring has an equal number of consecutive 0's and 1's in it. Examples: Input: str = "010011" Output: 4 Explanation: The substrings with consecutive 0's and 1's are "01", "
9 min read
Longest subarray having difference in the count of 1's and 0's equal to k
Given a binary array arr[] of size n and a value k. The task is to find the length of the longest subarray having difference in the count of 1's and 0's equal to k. The count of 1's should be equal to or greater than the count of 0's in the subarray according to the value of k. Examples: Input: arr[
7 min read
Find the total number of Subarrays of 0's
Given an array arr[] of length N of 0's and 1's, the task is to find the total number of subarrays of 0's. Examples: Input: N = 4, arr[] = {0, 0, 1, 0}Output: 4Explanation: Following are the subarrays of length 1: {0}, {0}, {0} - 3 length 2: {0, 0} - 1. Total Subarrays: 3 + 1 = 4 Input: N = 4, arr[]
9 min read
Count of subarrays which start and end with the same element
Given an array A of size N where the array elements contain values from 1 to N with duplicates, the task is to find the total number of subarrays that start and end with the same element. Examples: Input: A[] = {1, 2, 1, 5, 2} Output: 7 Explanation: Total 7 sub-array of the given array are {1}, {2},
10 min read
Count subarrays having an equal count of 0s and 1s segregated
Given a binary array arr[], the task is to count the number of subarrays having equal count of 0s and 1s, and all the 0s and 1s are placed consecutively in that subarray. Examples: Input: arr[] = {1, 0, 1, 1}Output: 2Explanation: The subarrays satisfying the given conditions are {1, 0} and {0, 1}. T
10 min read