Count special palindromes in a String
Last Updated :
04 Aug, 2022
Given a String s, count all special palindromic substrings of size greater than 1. A Substring is called special palindromic substring if all the characters in the substring are same or only the middle character is different for odd length. Example "aabaa" and "aaa" are special palindromic substrings and "abcba" is not special palindromic substring.
Examples :
Input : str = " abab"
Output : 2
All Special Palindromic substring are: "aba", "bab"
Input : str = "aabbb"
Output : 4
All Special substring are: "aa", "bb", "bbb", "bb"
Simple Solution is that we simply generate all substrings one-by-one and count how many substring are Special Palindromic substring. This solution takes O(n3) time.
Efficient Solution
There are 2 Cases :
- Case 1: All Palindromic substrings have same character :
We can handle this case by simply counting the same continuous character and using formula K*(K+1)/2 (total number of substring possible : Here K is count of Continuous same char).
Lets Str = "aaabba"
Traverse string from left to right and Count of same char
"aaabba" = 3, 2, 1
for "aaa" : total substring possible are
'aa' 'aa', 'aaa', 'a', 'a', 'a' : 3(3+1)/2 = 6
"bb" : 'b', 'b', 'bb' : 2(2+1)/2 = 3
'a' : 'a' : 1(1+1)/2 = 1
- Case 2: We can handle this case by storing count of same character in another temporary array called "sameChar[n]" of size n. and pick each character one-by-one and check its previous and forward character are equal or not if equal then there are min_between( sameChar[previous], sameChar[forward] ) substring possible.
Let's Str = "aabaaab"
Count of smiler char from left to right :
that we will store in Temporary array "sameChar"
Str = " a a b a a a b "
sameChar[] = 2 2 1 3 3 3 1
According to the problem statement middle character is different:
so we have only left with char "b" at index :2 ( index from 0 to n-1)
substring : "aabaaa"
so only two substring are possible : "aabaa", "aba"
that is min (smilerChar[index-1], smilerChar[index+1] ) that is 2.
Below is the implementation of above idea
C++
// C++ program to count special Palindromic substring
#include <bits/stdc++.h>
using namespace std;
// Function to count special Palindromic substring
int CountSpecialPalindrome(string str)
{
int n = str.length();
// store count of special Palindromic substring
int result = 0;
// it will store the count of continues same char
int sameChar[n] = { 0 };
int i = 0;
// traverse string character from left to right
while (i < n) {
// store same character count
int sameCharCount = 1;
int j = i + 1;
// count similar character
while (str[i] == str[j] && j < n)
sameCharCount++, j++;
// Case : 1
// so total number of substring that we can
// generate are : K *( K + 1 ) / 2
// here K is sameCharCount
result += (sameCharCount * (sameCharCount + 1) / 2);
// store current same char count in sameChar[]
// array
sameChar[i] = sameCharCount;
// increment i
i = j;
}
// Case 2: Count all odd length Special Palindromic
// substring
for (int j = 1; j < n; j++)
{
// if current character is equal to previous
// one then we assign Previous same character
// count to current one
if (str[j] == str[j - 1])
sameChar[j] = sameChar[j - 1];
// case 2: odd length
if (j > 0 && j < (n - 1) &&
(str[j - 1] == str[j + 1] &&
str[j] != str[j - 1]))
result += min(sameChar[j - 1],
sameChar[j + 1]);
}
// subtract all single length substring
return result - n;
}
// driver program to test above fun
int main()
{
string str = "abccba";
cout << CountSpecialPalindrome(str) << endl;
return 0;
}
Java
// Java program to count special
// Palindromic substring
import java.io.*;
import java.util.*;
import java.lang.*;
class GFG
{
// Function to count special
// Palindromic substring
public static int CountSpecialPalindrome(String str)
{
int n = str.length();
// store count of special
// Palindromic substring
int result = 0;
// it will store the count
// of continues same char
int[] sameChar = new int[n];
for(int v = 0; v < n; v++)
sameChar[v] = 0;
int i = 0;
// traverse string character
// from left to right
while (i < n)
{
// store same character count
int sameCharCount = 1;
int j = i + 1;
// count similar character
while (j < n &&
str.charAt(i) == str.charAt(j))
{
sameCharCount++;
j++;
}
// Case : 1
// so total number of
// substring that we can
// generate are : K *( K + 1 ) / 2
// here K is sameCharCount
result += (sameCharCount *
(sameCharCount + 1) / 2);
// store current same char
// count in sameChar[] array
sameChar[i] = sameCharCount;
// increment i
i = j;
}
// Case 2: Count all odd length
// Special Palindromic
// substring
for (int j = 1; j < n; j++)
{
// if current character is
// equal to previous one
// then we assign Previous
// same character count to
// current one
if (str.charAt(j) == str.charAt(j - 1))
sameChar[j] = sameChar[j - 1];
// case 2: odd length
if (j > 0 && j < (n - 1) &&
(str.charAt(j - 1) == str.charAt(j + 1) &&
str.charAt(j) != str.charAt(j - 1)))
result += Math.min(sameChar[j - 1],
sameChar[j + 1]);
}
// subtract all single
// length substring
return result - n;
}
// Driver code
public static void main(String args[])
{
String str = "abccba";
System.out.print(CountSpecialPalindrome(str));
}
}
// This code is contributed
// by Akanksha Rai(Abby_akku)
Python3
# Python3 program to count special
# Palindromic substring
# Function to count special
# Palindromic substring
def CountSpecialPalindrome(str):
n = len(str);
# store count of special
# Palindromic substring
result = 0;
# it will store the count
# of continues same char
sameChar=[0] * n;
i = 0;
# traverse string character
# from left to right
while (i < n):
# store same character count
sameCharCount = 1;
j = i + 1;
# count smiler character
while (j < n):
if(str[i] != str[j]):
break;
sameCharCount += 1;
j += 1;
# Case : 1
# so total number of substring
# that we can generate are :
# K *( K + 1 ) / 2
# here K is sameCharCount
result += int(sameCharCount *
(sameCharCount + 1) / 2);
# store current same char
# count in sameChar[] array
sameChar[i] = sameCharCount;
# increment i
i = j;
# Case 2: Count all odd length
# Special Palindromic substring
for j in range(1, n):
# if current character is equal
# to previous one then we assign
# Previous same character count
# to current one
if (str[j] == str[j - 1]):
sameChar[j] = sameChar[j - 1];
# case 2: odd length
if (j > 0 and j < (n - 1) and
(str[j - 1] == str[j + 1] and
str[j] != str[j - 1])):
result += (sameChar[j - 1]
if(sameChar[j - 1] < sameChar[j + 1])
else sameChar[j + 1]);
# subtract all single
# length substring
return result-n;
# Driver Code
str = "abccba";
print(CountSpecialPalindrome(str));
# This code is contributed by mits.
C#
// C# program to count special
// Palindromic substring
using System;
class GFG
{
// Function to count special
// Palindromic substring
public static int CountSpecialPalindrome(String str)
{
int n = str.Length;
// store count of special
// Palindromic substring
int result = 0;
// it will store the count
// of continues same char
int[] sameChar = new int[n];
for(int v = 0; v < n; v++)
sameChar[v] = 0;
int i = 0;
// traverse string character
// from left to right
while (i < n)
{
// store same character count
int sameCharCount = 1;
int j = i + 1;
// count smiler character
while (j < n &&
str[i] == str[j])
{
sameCharCount++;
j++;
}
// Case : 1
// so total number of
// substring that we can
// generate are : K *( K + 1 ) / 2
// here K is sameCharCount
result += (sameCharCount *
(sameCharCount + 1) / 2);
// store current same char
// count in sameChar[] array
sameChar[i] = sameCharCount;
// increment i
i = j;
}
// Case 2: Count all odd length
// Special Palindromic
// substring
for (int j = 1; j < n; j++)
{
// if current character is
// equal to previous one
// then we assign Previous
// same character count to
// current one
if (str[j] == str[j - 1])
sameChar[j] = sameChar[j - 1];
// case 2: odd length
if (j > 0 && j < (n - 1) &&
(str[j - 1] == str[j + 1] &&
str[j] != str[j - 1]))
result += Math.Min(sameChar[j - 1],
sameChar[j + 1]);
}
// subtract all single
// length substring
return result - n;
}
// Driver code
public static void Main()
{
String str = "abccba";
Console.Write(CountSpecialPalindrome(str));
}
}
// This code is contributed by mits.
PHP
<?php
// PHP program to count special
// Palindromic substring
// Function to count special
// Palindromic substring
function CountSpecialPalindrome($str)
{
$n = strlen($str);
// store count of special
// Palindromic substring
$result = 0;
// it will store the count
// of continues same char
$sameChar=array_fill(0, $n, 0);
$i = 0;
// traverse string character
// from left to right
while ($i < $n)
{
// store same character count
$sameCharCount = 1;
$j = $i + 1;
// count smiler character
while ($j < $n)
{
if($str[$i] != $str[$j])
break;
$sameCharCount++;
$j++;
}
// Case : 1
// so total number of substring
// that we can generate are :
// K *( K + 1 ) / 2
// here K is sameCharCount
$result += (int)($sameCharCount *
($sameCharCount + 1) / 2);
// store current same char
// count in sameChar[] array
$sameChar[$i] = $sameCharCount;
// increment i
$i = $j;
}
// Case 2: Count all odd length
// Special Palindromic substring
for ($j = 1; $j < $n; $j++)
{
// if current character is equal
// to previous one then we assign
// Previous same character count
// to current one
if ($str[$j] == $str[$j - 1])
$sameChar[$j] = $sameChar[$j - 1];
// case 2: odd length
if ($j > 0 && $j < ($n - 1) &&
($str[$j - 1] == $str[$j + 1] &&
$str[$j] != $str[$j - 1]))
$result += $sameChar[$j - 1] <
$sameChar[$j + 1] ?
$sameChar[$j - 1] :
$sameChar[$j + 1];
}
// subtract all single
// length substring
return $result - $n;
}
// Driver Code
$str = "abccba";
echo CountSpecialPalindrome($str);
// This code is contributed by mits.
?>
JavaScript
<script>
// JavaScript program to count special Palindromic substring
// Function to count special Palindromic substring
function CountSpecialPalindrome(str) {
var n = str.length;
// store count of special Palindromic substring
var result = 0;
// it will store the count of continues same char
var sameChar = [...Array(n)];
var i = 0;
// traverse string character from left to right
while (i < n) {
// store same character count
var sameCharCount = 1;
var j = i + 1;
// count smiler character
while (str[i] == str[j] && j < n) sameCharCount++, j++;
// Case : 1
// so total number of substring that we can
// generate are : K *( K + 1 ) / 2
// here K is sameCharCount
result += (sameCharCount * (sameCharCount + 1)) / 2;
// store current same char count in sameChar[]
// array
sameChar[i] = sameCharCount;
// increment i
i = j;
}
// Case 2: Count all odd length Special Palindromic
// substring
for (var j = 1; j < n; j++) {
// if current character is equal to previous
// one then we assign Previous same character
// count to current one
if (str[j] == str[j - 1]) sameChar[j] = sameChar[j - 1];
// case 2: odd length
if (
j > 0 &&
j < n - 1 &&
str[j - 1] == str[j + 1] &&
str[j] != str[j - 1]
)
result += Math.min(sameChar[j - 1], sameChar[j + 1]);
}
// subtract all single length substring
return result - n;
}
// driver program to test above fun
var str = "abccba";
document.write(CountSpecialPalindrome(str) + "<br>");
</script>
Time Complexity : O(n)
Auxiliary Space : O(n)
Similar Reads
Palindrome Substrings Count
Given a string s, the task is to count all palindromic substrings of length more than one.Examples:Input: s = "abaab"Output: 3Explanation: Palindromic substrings with length greater than 1, are "aba", "aa", and "baab".Input: s = "aaa"Output: 3Explanation: Palindromic substrings with length greater t
15+ min read
Count palindrome words in a sentence
Given a string str and the task is to count palindrome words present in the string str. Examples: Input : Madam Arora teaches malayalam Output : 3 The string contains three palindrome words (i.e., Madam, Arora, malayalam) so the count is three. Input : Nitin speaks malayalam Output : 2 The string co
5 min read
Count maximum-length palindromes in a String
Given a string, count how many maximum-length palindromes are present. (It need not be a substring) Examples: Input : str = "ababa" Output: 2 Explanation : palindromes of maximum of lengths are : "ababa", "baaab" Input : str = "ababab" Output: 4 Explanation : palindromes of maximum of lengths are :
9 min read
Count Palindromic Substrings in a Binary String
Given a binary string S i.e. which consists only of 0's and 1's. Calculate the number of substrings of S which are palindromes. String S contains at most two 1's. Examples: Input: S = "011"Output: 4Explanation: "0", "1", "1" and "11" are the palindromic substrings. Input: S = "0" Output: 1Explanatio
7 min read
Palindrome String Coding Problems
A string is called a palindrome if the reverse of the string is the same as the original one.Example: âmadamâ, âracecarâ, â12321â.Palindrome StringProperties of a Palindrome String:A palindrome string has some properties which are mentioned below:A palindrome string has a symmetric structure which m
2 min read
Count of Palindrome Strings in given Array of strings
Given an array of strings arr[] of size N where each string consists only of lowercase English letter. The task is to return the count of all palindromic string in the array. Examples: Input: arr[] = {"abc","car","ada","racecar","cool"}Output: 2Explanation: "ada" and "racecar" are the two palindrome
5 min read
Make String Anti-Palindrome
Given a string S of length N is said to be an Anti-palindrome string if, for each 0 ? i ? N-1, Si != S(N - 1 ? i). The task is to print Anti-Palindrome String formed, If it is not possible to find print "-1" Examples: Input: S = "abdcccdb"Output: "cbbaccdd"Explanation: cbbaccdd is an Anti-palindrome
6 min read
Count of Palindromic substrings in an Index range
Given a string str of small alphabetic characters other than this we will be given many substrings of this string in form of index tuples. We need to find out the count of the palindromic substrings in given substring range. Examples: Input : String str = "xyaabax" Range1 = (3, 5) Range2 = (2, 3) Ou
11 min read
Queries on substring palindrome formation
Given a string S, and two types of queries. Type 1: 1 L x, Indicates update Lth index of string S by x character. Type 2: 2 L R, Find if characters between position L and R of string, S can form a palindrome string. If palindrome can be formed print "Yes", else print "No". 1 <= L, R <= |S| Exa
15+ min read
Recursive function to check if a string is palindrome
Given a string s, the task is to check if it is a palindrome or not.Examples:Input: s = "abba"Output: YesExplanation: s is a palindromeInput: s = "abc" Output: NoExplanation: s is not a palindromeUsing Recursion and Two Pointers - O(n) time and O(n) spaceThe idea is to recursively check if the strin
8 min read