Count root to leaf paths having exactly K distinct nodes in a Binary Tree
Last Updated :
22 Jun, 2021
Given a Binary Tree consisting of N nodes rooted at 1, an integer K and an array arr[] consisting of values assigned to each node, the task is to count the number of root to leaf paths having exactly K distinct nodes in the given Binary Tree.
Examples:
Input: N = 3, Edges[][] = {{1, 2}, {1, 3}}, arr[] = {3, 3, 2}, K = 2, Below is the given Tree:
Output: 1
Explanation:
There exists only 1 distinct path i.e., Path 1 -> 3 contains 2 distinct nodes.
Hence, the answer is 1.
Input: N = 7, Edges[][] = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 6}, {3, 7}}, arr[] = {2, 2, 2, 2, 3, 5, 2}, K = 1, Below is the given Tree:
Output: 2
Explanation:
There exists only 2 distinct paths containing 1 distinct node:
1) Paths 1 -> 2 -> 4,
2) Paths 1 -> 3 -> 7
Hence, the answer is 2.
Naive Approach: The simplest approach is to generate all possible paths from the root to the leaf nodes and for each path, check if it contains K distinct nodes or not. Finally, print the count of such paths.
Time Complexity: O(N * H2), where H denotes the height of the tree.
Auxiliary Space: O(N);
Efficient Approach: The idea is to use Preorder Traversal and a Map to count the distinct node in the path from the root to the current node. Follow the below steps to solve the problem:
- Initialize a variable distinct_nodes as 0 to store the count of the distinct node from the root to the current node and ans as 0 to store the total distinct root to leaf paths having K distinct node.
- Perform Preorder Traversal in the given binary tree and store the count of the distinct node from root to the current node in the map M.
- Whenever a node occurs for the first time on a path, increase the count of distinct nodes by 1.
- If the count of distinct nodes on a path becomes greater than K return to the parent node of the current node.
- Otherwise, continue to visit the children of the current node incrementing the frequency of the current node value by 1.
- In the above step, increment ans by 1 if the count of distinct nodes on that root to leaf path is exactly equal to K.
- After the above steps print the value of ans as the resultant count.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure of a Tree Node
struct Node {
int key;
Node *left, *right;
};
// Function to create new tree node
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
temp->left = temp->right = NULL;
return temp;
}
// Function to count all root to leaf
// paths having K distinct nodes
void findkDistinctNodePaths(
Node* root, unordered_map<int, int> freq,
int distinct_nodes, int k, int& ans)
{
// If current node is null
if (root == NULL)
return;
// Update count of distinct nodes
if (freq[root->key] == 0)
distinct_nodes++;
// If count > k then return to
// the parent node
if (distinct_nodes > k)
return;
// Update frequency of current node
freq[root->key]++;
// Go to the left subtree
findkDistinctNodePaths(root->left,
freq,
distinct_nodes,
k, ans);
// Go to the right subtree
findkDistinctNodePaths(root->right,
freq,
distinct_nodes,
k, ans);
// If current node is leaf node
if (root->left == NULL
&& root->right == NULL) {
// If count of distinct node
// is same as K, increment ans
if (distinct_nodes == k)
ans++;
}
}
// Function to find count of root to
// leaf paths having K distinct node
void printkDistinctNodePaths(Node* root,
int k)
{
// Initialize unordered map
unordered_map<int, int> freq;
// Stores count of distinct node
int distinct_nodes = 0;
// Stores total count of nodes
int ans = 0;
// Perform Preorder Traversal
findkDistinctNodePaths(root, freq,
distinct_nodes,
k, ans);
// Print the final count
cout << ans;
}
// Driver Code
int main()
{
/* 2
/ \
/ \
1 3
/ \ / \
/ \ / \
4 2 -5 3
*/
// Given Binary Tree
Node* root = newNode(2);
root->left = newNode(1);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(2);
root->right->left = newNode(-5);
root->right->right = newNode(3);
// Given K
int K = 2;
// Function Call
printkDistinctNodePaths(root, K);
return 0;
}
Java
// Java program for the
// above approach
import java.util.*;
class GFG{
// Structure of a
// Tree Node
static class Node
{
int key;
Node left, right;
};
static int ans;
// Function to create
// new tree node
static Node newNode(int key)
{
Node temp = new Node();
temp.key = key;
temp.left = temp.right = null;
return temp;
}
// Function to count all root
// to leaf paths having K
// distinct nodes
static void findkDistinctNodePaths(Node root,
HashMap<Integer,
Integer> freq,
int distinct_nodes,
int k)
{
// If current node is null
if (root == null)
return;
// Update count of distinct nodes
if (!freq.containsKey(root.key))
distinct_nodes++;
// If count > k then return
// to the parent node
if (distinct_nodes > k)
return;
// Update frequency of
// current node
if(freq.containsKey(root.key))
{
freq.put(root.key,
freq.get(root.key) + 1);
}
else
{
freq.put(root.key, 1);
}
// Go to the left subtree
findkDistinctNodePaths(root.left, freq,
distinct_nodes, k);
// Go to the right subtree
findkDistinctNodePaths(root.right, freq,
distinct_nodes, k);
// If current node is
// leaf node
if (root.left == null &&
root.right == null)
{
// If count of distinct node
// is same as K, increment ans
if (distinct_nodes == k)
ans++;
}
}
// Function to find count of root to
// leaf paths having K distinct node
static void printkDistinctNodePaths(Node root,
int k)
{
// Initialize unordered map
HashMap<Integer,
Integer> freq = new HashMap<>();
// Stores count of
// distinct node
int distinct_nodes = 0;
// Stores total
// count of nodes
ans = 0;
// Perform Preorder Traversal
findkDistinctNodePaths(root, freq,
distinct_nodes, k);
// Print the final count
System.out.print(ans);
}
// Driver Code
public static void main(String[] args)
{
/* 2
/ \
/ \
1 3
/ \ / \
/ \ / \
4 2 -5 3
*/
// Given Binary Tree
Node root = newNode(2);
root.left = newNode(1);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(2);
root.right.left = newNode(-5);
root.right.right = newNode(3);
// Given K
int K = 2;
// Function Call
printkDistinctNodePaths(root, K);
}
}
// This code is contributed by gauravrajput1
Python3
# Python3 program for the above approach
# Structure of a Tree Node
class newNode:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
ans = 0
# Function to count all root to leaf
# paths having K distinct nodes
def findkDistinctNodePaths(root, freq,
distinct_nodes, k):
global ans
# If current node is None
if (root == None):
return
# Update count of distinct nodes
if (root.key not in freq):
distinct_nodes += 1
# If count > k then return to
# the parent node
if (distinct_nodes > k):
return
# Update frequency of current node
if (root.key in freq):
freq[root.key] += 1
else:
freq[root.key] = freq.get(root.key, 0) + 1
# Go to the left subtree
findkDistinctNodePaths(root.left, freq,
distinct_nodes, k)
# Go to the right subtree
findkDistinctNodePaths(root.right, freq,
distinct_nodes, k)
# If current node is leaf node
if (root.left == None and
root.right == None):
# If count of distinct node
# is same as K, increment ans
if (distinct_nodes == k):
ans += 1
# Function to find count of root to
# leaf paths having K distinct node
def printkDistinctNodePaths(root, k):
global ans
# Initialize unordered map
freq = {}
# Stores count of distinct node
distinct_nodes = 0
# Perform Preorder Traversal
findkDistinctNodePaths(root, freq,
distinct_nodes, k)
# Print the final count
print(ans)
# Driver Code
if __name__ == '__main__':
''' 2
/ \
/ \
1 3
/ \ / \
/ \ / \
4 2 -5 3
'''
# Given Binary Tree
root = newNode(2)
root.left = newNode(1)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(2)
root.right.left = newNode(-5)
root.right.right = newNode(3)
# Given K
K = 2
# Function Call
printkDistinctNodePaths(root, K)
# This code is contributed by SURENDRA_GANGWAR
C#
// C# program for the
// above approach
using System;
using System.Collections.Generic;
class GFG{
// Structure of a
// Tree Node
public class Node
{
public int key;
public Node left, right;
};
static int ans;
// Function to create
// new tree node
static Node newNode(int key)
{
Node temp = new Node();
temp.key = key;
temp.left = temp.right = null;
return temp;
}
// Function to count all root
// to leaf paths having K
// distinct nodes
static void findkDistinctNodePaths(Node root,
Dictionary<int, int> freq,
int distinct_nodes,
int k)
{
// If current node is null
if (root == null)
return;
// Update count of distinct nodes
if (!freq.ContainsKey(root.key))
distinct_nodes++;
// If count > k then return
// to the parent node
if (distinct_nodes > k)
return;
// Update frequency of
// current node
if (freq.ContainsKey(root.key))
{
freq[root.key] = freq[root.key] + 1;
}
else
{
freq.Add(root.key, 1);
}
// Go to the left subtree
findkDistinctNodePaths(root.left, freq,
distinct_nodes, k);
// Go to the right subtree
findkDistinctNodePaths(root.right, freq,
distinct_nodes, k);
// If current node is
// leaf node
if (root.left == null &&
root.right == null)
{
// If count of distinct node
// is same as K, increment ans
if (distinct_nodes == k)
ans++;
}
}
// Function to find count of root to
// leaf paths having K distinct node
static void printkDistinctNodePaths(Node root,
int k)
{
// Initialize unordered map
Dictionary<int,
int> freq = new Dictionary<int,
int>();
// Stores count of
// distinct node
int distinct_nodes = 0;
// Stores total
// count of nodes
ans = 0;
// Perform Preorder Traversal
findkDistinctNodePaths(root, freq,
distinct_nodes, k);
// Print the readonly count
Console.Write(ans);
}
// Driver Code
public static void Main(String[] args)
{
/* 2
/ \
/ \
1 3
/ \ / \
/ \ / \
4 2 -5 3
*/
// Given Binary Tree
Node root = newNode(2);
root.left = newNode(1);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(2);
root.right.left = newNode(-5);
root.right.right = newNode(3);
// Given K
int K = 2;
// Function Call
printkDistinctNodePaths(root, K);
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// Javascript program for the above approach
// Structure of tree node
class Node
{
constructor(key)
{
this.left = null;
this.right = null;
this.key = key;
}
}
let ans;
// Function to create
// new tree node
function newNode(key)
{
let temp = new Node(key);
return temp;
}
// Function to count all root
// to leaf paths having K
// distinct nodes
function findkDistinctNodePaths(root, freq,
distinct_nodes, k)
{
// If current node is null
if (root == null)
return;
// Update count of distinct nodes
if (!freq.has(root.key))
distinct_nodes++;
// If count > k then return
// to the parent node
if (distinct_nodes > k)
return;
// Update frequency of
// current node
if (freq.has(root.key))
{
freq.set(root.key,
freq.get(root.key) + 1);
}
else
{
freq.set(root.key, 1);
}
// Go to the left subtree
findkDistinctNodePaths(root.left, freq,
distinct_nodes, k);
// Go to the right subtree
findkDistinctNodePaths(root.right, freq,
distinct_nodes, k);
// If current node is
// leaf node
if (root.left == null &&
root.right == null)
{
// If count of distinct node
// is same as K, increment ans
if (distinct_nodes == k)
ans++;
}
}
// Function to find count of root to
// leaf paths having K distinct node
function printkDistinctNodePaths(root, k)
{
// Initialize unordered map
let freq = new Map();
// Stores count of
// distinct node
let distinct_nodes = 0;
// Stores total
// count of nodes
ans = 0;
// Perform Preorder Traversal
findkDistinctNodePaths(root, freq,
distinct_nodes, k);
// Print the final count
document.write(ans);
}
// Driver code
/* 2
/ \
/ \
1 3
/ \ / \
/ \ / \
4 2 -5 3
*/
// Given Binary Tree
let root = newNode(2);
root.left = newNode(1);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(2);
root.right.left = newNode(-5);
root.right.right = newNode(3);
// Given K
let K = 2;
// Function Call
printkDistinctNodePaths(root, K);
// This code is contributed by suresh07
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Root to leaf paths having equal lengths in a Binary Tree Given a binary tree, print the number of root to leaf paths having equal lengths. Examples: Input : Root of below tree 10 / \ 8 2 / \ / \ 3 5 2 4 Output : 4 paths are of length 3. Input : Root of below tree 10 / \ 8 2 / \ / \ 3 5 2 4 / \ 9 1 Output : 2 paths are of length 3 2 paths are of length 4Re
8 min read
Iterative program to count leaf nodes in a Binary Tree Given a Binary Tree, the task is to count leaves in it. A node is a leaf node if both left and right child nodes of it are NULL.Example:Input: Output: 3Explanation: Three leaf nodes are 3, 4 and 5 as both of their left and right child is NULL.Input: Output: 3Explanation: Three leaf nodes are 4, 6 an
7 min read
Count of nodes in a given N-ary tree having distance to all leaf nodes equal in their subtree Given an N-ary tree root, the task is to find the number of non-leaf nodes in the tree such that all the leaf nodes in the subtree of the current node are at an equal distance from the current node. Example: Input: Tree in the below imageOutput: 4Explanation: The nodes {10, 3, 2, 4} have the distanc
11 min read
Program to count leaf nodes in a binary tree Given a Binary Tree, the task is to count leaves in it. A node is a leaf node if both left and right child nodes of it are NULL. Example:Input: Output: 3Explanation: Three leaf nodes are 3, 4 and 5 as both of their left and right child is NULL.Input: Output: 3Explanation: Three leaf nodes are 4, 6 a
7 min read
Count nodes having smallest value in the path from root to itself in a Binary Tree Given a Binary Tree, the task is to count the number of nodes in the given Binary Tree such that the path from the root to that node contains node with value greater than or equal to that node. Examples: Input: 6 / \ 7 4 / \ / \ 3 7 1 2 Output: 5 Explanation: Root node 6 is considered as its the onl
8 min read
Count paths in a Binary Tree consisting of nodes in non-decreasing order Given a Binary Tree consisting of N nodes, the task is to find the number of paths from the root to any node X, such that all the node values in that path are at most X. Examples: Input: Below is the given Tree: Output: 4Explanation: The paths from the root to any node X that have value at most valu
15 min read