Open In App

Count permutations that are first decreasing then increasing.

Last Updated : 21 Aug, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an integer N, calculate the number of permutations of A = [1, 2, ..., N] which are first decreasing and then increasing. 
Examples:  

Input: N = 5 
Output : 14
Following are the sub-sequences which are first decreasing and then increasing: 
[2, 1, 3, 4, 5], [3, 1, 2, 4, 5], [4, 1, 2, 3, 5], [5, 1, 2, 3, 4], 
[3, 2, 1, 4, 5], [4, 2, 1, 3, 5], [5, 2, 1, 3, 4], [4, 3, 1, 2, 5], 
[5, 3, 1, 2, 4], [5, 4, 1, 2, 3], [5, 4, 3, 1, 2], [5, 4, 2, 1, 3], 
[5, 3, 2, 1, 4], [4, 3, 2, 1, 5]
Input : N = 1 
Output : 0  

Approach: It is clear that the point at which sequence becomes increasing from decreasing is occupied by the smallest element of the permutation which is 1. Also, decreasing sequence is always followed by an increasing sequence which means that the smallest element can have positions ranging [2, ..., N-1]. Otherwise, it will result in a fully increasing or fully decreasing sequence.
For example, consider N = 5 and position = 2, i.e the smallest element at position 2 in the sequence. Count all possible sequences with Configuration = [_, 1, _, _, _].
Select any 1 element from the remaining 4 elements (2, 3, 4, 5) to fill position 1. For example, we select element = 3. The configuration looks like [3, 1, _, _, _]. Only 1 sequence is possible i.e [3, 1, 2, 4, 5]. Thus, for every selected element to fill position 1, a sequence is possible. With this configuration, a total of 4C1 permutations is possible.
Now, consider the configuration = [_, _, 1, _, _]. 
A similar approach can be applied by selecting any 2 elements from the remaining 4 elements and for every pair of elements, a single valid permutation is possible. Hence, the number of permutations for this configuration = 4C2
The final configuration possible for N = 5 is [_, _, _, 1, _] 
Select any 3 of the remaining 4 elements and for every triplet, a permutation is obtained. Number of permutations, in this case, = 4C3
Final count = 4C1 + 4C2 + 4C3 for N = 5
Generalized result for N:  

Count = N-1C1 + N-1C2 + ... + N-1CN-2 which simplifies to,
\sum_{i = 1}^{N-2} N-1Ci = 2N-1 - 2 (from binomial theorem)
C++
// C++ implementation of the above approach
#include <bits/stdc++.h>

#define ll long long
using namespace std;

const int mod = 1000000007;

// Function to compute a^n % mod
ll power(ll a, ll n)
{

    if (n == 0)
        return 1;

    ll p = power(a, n / 2) % mod;
    p = (p * p) % mod;
    if (n & 1)
        p = (p * a) % mod;

    return p;
}

// Function to count permutations that are
// first decreasing and then increasing
int countPermutations(int n)
{

    // For n = 1 return 0
    if (n == 1) {
        return 0;
    }

    // Calculate and return result
    return (power(2, n - 1) - 2) % mod;
}

// Driver code
int main()
{
    int n = 5;
    cout << countPermutations(n);
    return 0;
}
Java
// Java implementation of the above approach 
class GFG
{

static final int mod = 1000000007; 

// Function to compute a^n % mod 
static long power(long a, long n) 
{ 

    if (n == 0) 
        return 1; 

    long p = power(a, n / 2) % mod; 
    p = (p * p) % mod; 
    if ((n & 1) == 1) 
        p = (p * a) % mod; 

    return p; 
} 

// Function to count permutations that are 
// first decreasing and then increasing 
static int countPermutations(int n) 
{ 

    // For n = 1 return 0 
    if (n == 1) 
    { 
        return 0; 
    } 

    // Calculate and return result 
    return ((int)power(2, n - 1) - 2) % mod; 
} 

// Driver code 
public static void main(String args[])
{ 
    int n = 5; 
    System.out.println(countPermutations(n)); 
} 
}

// This code is contributed by Arnab Kundu
Python3
# Python3 implementation of the above approach
mod = 1000000007

# Function to compute a^n % mod
def power(a, n):
    if(n == 0):
        return 1

    p = power(a, int(n / 2)) % mod;
    p = (p * p) % mod
    if (n & 1):
        p = (p * a) % mod

    return p

# Function to count permutations that are
# first decreasing and then increasing
def countPermutations(n):
    
    # For n = 1 return 0
    if (n == 1):
        return 0

    # Calculate and return result
    return (power(2, n - 1) - 2) % mod

# Driver code
if __name__ == '__main__':
    n = 5
    print(countPermutations(n))
    
# This code is contributed by
# Surendra_Gangwar
C#
// C# implementation of the above approach
using System;

class GFG
{
    
static int mod = 1000000007; 

// Function to compute a^n % mod 
static long power(long a, long n) 
{ 

    if (n == 0) 
        return 1; 

    long p = power(a, n / 2) % mod; 
    p = (p * p) % mod; 
    if ((n & 1) == 1) 
        p = (p * a) % mod; 

    return p; 
} 

// Function to count permutations that are 
// first decreasing and then increasing 
static int countPermutations(int n) 
{ 

    // For n = 1 return 0 
    if (n == 1) 
    { 
        return 0; 
    } 

    // Calculate and return result 
    return ((int)power(2, n - 1) - 2) % mod; 
} 

// Driver code 
static public void Main ()
{
    int n = 5; 
    Console.WriteLine(countPermutations(n)); 
} 
}

// This code is contributed by ajit..
PHP
<?php
// PHP implementation of the above approach

$mod = 1000000007;

// Function to compute a^n % mod
function power($a, $n)
{
    global $mod;
    if ($n == 0)
        return 1;

    $p = power($a, $n / 2) % $mod;
    $p = ($p * $p) % $mod;
    if ($n & 1)
        $p = ($p * $a) % $mod;

    return $p;
}

// Function to count permutations that are
// first decreasing and then increasing
function countPermutations($n)
{
    global $mod;
    
    // For n = 1 return 0
    if ($n == 1) 
    {
        return 0;
    }

    // Calculate and return result
    return (power(2, $n - 1) - 2) % $mod;
}

// Driver Code
$n = 5;
echo countPermutations($n);

// This code is contributed by Tushil.
?>
JavaScript
<script>
    // Javascript implementation of the above approach
    
    let mod = 1000000007; 
  
    // Function to compute a^n % mod 
    function power(a, n) 
    { 

        if (n == 0) 
            return 1; 

        let p = power(a, parseInt(n / 2, 10)) % mod; 
        p = (p * p) % mod; 
        if ((n & 1) == 1) 
            p = (p * a) % mod; 

        return p; 
    } 

    // Function to count permutations that are 
    // first decreasing and then increasing 
    function countPermutations(n) 
    { 

        // For n = 1 return 0 
        if (n == 1) 
        { 
            return 0; 
        } 

        // Calculate and return result 
        return (power(2, n - 1) - 2) % mod; 
    } 
    
    let n = 5; 
    document.write(countPermutations(n)); 
        
</script>

Output: 
14

 

Time Complexity: O(log2n)
Auxiliary Space: O(1), since no extra space has been taken.


Next Article

Similar Reads