Count pairs from two linked lists whose sum is equal to a given value
Last Updated :
23 Jul, 2025
Given two linked lists(can be sorted or unsorted) of size n1 and n2 of distinct elements. Given a value x. The problem is to count all pairs from both lists whose sum is equal to the given value x.
Note: The pair has an element from each linked list.
Examples:
Input : list1 = 3->1->5->7
list2 = 8->2->5->3
x = 10
Output : 2
The pairs are:
(5, 5) and (7, 3)
Input : list1 = 4->3->5->7->11->2->1
list2 = 2->3->4->5->6->8-12
x = 9
Output : 5
Method 1 (Naive Approach): Using two loops pick elements from both the linked lists and check whether the sum of the pair is equal to x or not.
Implementation:
C++
// C++ implementation to count pairs from both linked
// lists whose sum is equal to a given value
#include <bits/stdc++.h>
using namespace std;
/* A Linked list node */
struct Node
{
int data;
struct Node* next;
};
// function to insert a node at the
// beginning of the linked list
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node =
(struct Node*) malloc(sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list to the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// function to count all pairs from both the linked lists
// whose sum is equal to a given value
int countPairs(struct Node* head1, struct Node* head2, int x)
{
int count = 0;
struct Node *p1, *p2;
// traverse the 1st linked list
for (p1 = head1; p1 != NULL; p1 = p1->next)
// for each node of 1st list
// traverse the 2nd list
for (p2 = head2; p2 != NULL; p2 = p2->next)
// if sum of pair is equal to 'x'
// increment count
if ((p1->data + p2->data) == x)
count++;
// required count of pairs
return count;
}
// Driver program to test above
int main()
{
struct Node* head1 = NULL;
struct Node* head2 = NULL;
// create linked list1 3->1->5->7
push(&head1, 7);
push(&head1, 5);
push(&head1, 1);
push(&head1, 3);
// create linked list2 8->2->5->3
push(&head2, 3);
push(&head2, 5);
push(&head2, 2);
push(&head2, 8);
int x = 10;
cout << "Count = "
<< countPairs(head1, head2, x);
return 0;
}
Java
// Java implementation to count pairs from both linked
// lists whose sum is equal to a given value
// Note : here we use java.util.LinkedList for
// linked list implementation
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
class GFG
{
// method to count all pairs from both the linked lists
// whose sum is equal to a given value
static int countPairs(LinkedList<Integer> head1, LinkedList<Integer> head2, int x)
{
int count = 0;
// traverse the 1st linked list
Iterator<Integer> itr1 = head1.iterator();
while(itr1.hasNext())
{
// for each node of 1st list
// traverse the 2nd list
Iterator<Integer> itr2 = head2.iterator();
Integer t = itr1.next();
while(itr2.hasNext())
{
// if sum of pair is equal to 'x'
// increment count
if ((t + itr2.next()) == x)
count++;
}
}
// required count of pairs
return count;
}
// Driver method
public static void main(String[] args)
{
Integer arr1[] = {3, 1, 5, 7};
Integer arr2[] = {8, 2, 5, 3};
// create linked list1 3->1->5->7
LinkedList<Integer> head1 = new LinkedList<>(Arrays.asList(arr1));
// create linked list2 8->2->5->3
LinkedList<Integer> head2 = new LinkedList<>(Arrays.asList(arr2));
int x = 10;
System.out.println("Count = " + countPairs(head1, head2, x));
}
}
Python3
# Python3 implementation to count pairs from both linked
# lists whose sum is equal to a given value
# A Linked list node
class Node:
def __init__(self,data):
self.data = data
self.next = None
# function to insert a node at the
# beginning of the linked list
def push(head_ref,new_data):
new_node=Node(new_data)
#new_node.data = new_data
new_node.next = head_ref
head_ref = new_node
return head_ref
# function to count all pairs from both the linked lists
# whose sum is equal to a given value
def countPairs(head1, head2, x):
count = 0
#struct Node p1, p2
# traverse the 1st linked list
p1 = head1
while(p1 != None):
# for each node of 1st list
# traverse the 2nd list
p2 = head2
while(p2 != None):
# if sum of pair is equal to 'x'
# increment count
if ((p1.data + p2.data) == x):
count+=1
p2 = p2.next
p1 = p1.next
# required count of pairs
return count
# Driver program to test above
if __name__=='__main__':
head1 = None
head2 = None
# create linked list1 3.1.5.7
head1=push(head1, 7)
head1=push(head1, 5)
head1=push(head1, 1)
head1=push(head1, 3)
# create linked list2 8.2.5.3
head2=push(head2, 3)
head2=push(head2, 5)
head2=push(head2, 2)
head2=push(head2, 8)
x = 10
print("Count = ",countPairs(head1, head2, x))
# This code is contributed by AbhiThakur
C#
// C# implementation to count pairs from both linked
// lists whose sum is equal to a given value
using System;
using System.Collections.Generic;
// Note : here we use using System.Collections.Generic for
// linked list implementation
class GFG
{
// method to count all pairs from both the linked lists
// whose sum is equal to a given value
static int countPairs(List<int> head1, List<int> head2, int x)
{
int count = 0;
// traverse the 1st linked list
foreach(int itr1 in head1)
{
// for each node of 1st list
// traverse the 2nd list
int t = itr1;
foreach(int itr2 in head2)
{
// if sum of pair is equal to 'x'
// increment count
if ((t + itr2) == x)
count++;
}
}
// required count of pairs
return count;
}
// Driver code
public static void Main(String []args)
{
int []arr1 = {3, 1, 5, 7};
int []arr2 = {8, 2, 5, 3};
// create linked list1 3->1->5->7
List<int> head1 = new List<int>(arr1);
// create linked list2 8->2->5->3
List<int> head2 = new List<int>(arr2);
int x = 10;
Console.WriteLine("Count = " + countPairs(head1, head2, x));
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// javascript implementation to count pairs from both linked
// lists whose sum is equal to a given value
// Note : here we use java.util.LinkedList for
// linked list implementation
// method to count all pairs from both the linked lists
// whose sum is equal to a given value
function countPairs( head1, head2 , x) {
var count = 0;
// traverse the 1st linked list
for (var itr1 of head1) {
// for each node of 1st list
// traverse the 2nd list
for (var itr2 of head2) {
// if sum of pair is equal to 'x'
// increment count
if ((itr1 + itr2) == x)
count++;
}
}
// required count of pairs
return count;
}
// Driver method
var arr1 = [ 3, 1, 5, 7 ];
var arr2 = [ 8, 2, 5, 3 ];
// create linked list1 3->1->5->7
var head1 = (arr1);
// create linked list2 8->2->5->3
var head2 = arr2;
var x = 10;
document.write("Count = " + countPairs(head1, head2, x));
// This code is contributed by Rajput-Ji
</script>
Time Complexity: O(n1*n2)
Auxiliary Space: O(1)
Method 2 (Sorting): Sort the 1st linked list in ascending order and the 2nd linked list in descending order using merge sort technique. Now traverse both the lists from left to right in the following way:
Algorithm:
countPairs(list1, list2, x)
Initialize count = 0
while list1 != NULL and list2 != NULL
if (list1->data + list2->data) == x
list1 = list1->next
list2 = list2->next
count++
else if (list1->data + list2->data) > x
list2 = list2->next
else
list1 = list1->next
return count
For simplicity, the implementation given below assumes that list1 is sorted in ascending order and list2 is sorted in descending order.
Implementation:
C++
// C++ implementation to count pairs from both linked
// lists whose sum is equal to a given value
#include <bits/stdc++.h>
using namespace std;
/* A Linked list node */
struct Node
{
int data;
struct Node* next;
};
// function to insert a node at the
// beginning of the linked list
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node =
(struct Node*) malloc(sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list to the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// function to count all pairs from both the linked
// lists whose sum is equal to a given value
int countPairs(struct Node* head1, struct Node* head2,
int x)
{
int count = 0;
// sort head1 in ascending order and
// head2 in descending order
// sort (head1), sort (head2)
// For simplicity both lists are considered to be
// sorted in the respective orders
// traverse both the lists from left to right
while (head1 != NULL && head2 != NULL)
{
// if this sum is equal to 'x', then move both
// the lists to next nodes and increment 'count'
if ((head1->data + head2->data) == x)
{
head1 = head1->next;
head2 = head2->next;
count++;
}
// if this sum is greater than x, then
// move head2 to next node
else if ((head1->data + head2->data) > x)
head2 = head2->next;
// else move head1 to next node
else
head1 = head1->next;
}
// required count of pairs
return count;
}
// Driver program to test above
int main()
{
struct Node* head1 = NULL;
struct Node* head2 = NULL;
// create linked list1 1->3->5->7
// assumed to be in ascending order
push(&head1, 7);
push(&head1, 5);
push(&head1, 3);
push(&head1, 1);
// create linked list2 8->5->3->2
// assumed to be in descending order
push(&head2, 2);
push(&head2, 3);
push(&head2, 5);
push(&head2, 8);
int x = 10;
cout << "Count = "
<< countPairs(head1, head2, x);
return 0;
}
Java
// Java implementation to count pairs from both linked
// lists whose sum is equal to a given value
// Note : here we use java.util.LinkedList for
// linked list implementation
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
class GFG
{
// method to count all pairs from both the linked lists
// whose sum is equal to a given value
static int countPairs(LinkedList<Integer> head1, LinkedList<Integer> head2, int x)
{
int count = 0;
// sort head1 in ascending order and
// head2 in descending order
Collections.sort(head1);
Collections.sort(head2,Collections.reverseOrder());
// traverse both the lists from left to right
Iterator<Integer> itr1 = head1.iterator();
Iterator<Integer> itr2 = head2.iterator();
Integer num1 = itr1.hasNext() ? itr1.next() : null;
Integer num2 = itr2.hasNext() ? itr2.next() : null;
while(num1 != null && num2 != null)
{
// if this sum is equal to 'x', then move both
// the lists to next nodes and increment 'count'
if ((num1 + num2) == x)
{
num1 = itr1.hasNext() ? itr1.next() : null;
num2 = itr2.hasNext() ? itr2.next() : null;
count++;
}
// if this sum is greater than x, then
// move itr2 to next node
else if ((num1 + num2) > x)
num2 = itr2.hasNext() ? itr2.next() : null;
// else move itr1 to next node
else
num1 = itr1.hasNext() ? itr1.next() : null;
}
// required count of pairs
return count;
}
// Driver method
public static void main(String[] args)
{
Integer arr1[] = {3, 1, 5, 7};
Integer arr2[] = {8, 2, 5, 3};
// create linked list1 3->1->5->7
LinkedList<Integer> head1 = new LinkedList<>(Arrays.asList(arr1));
// create linked list2 8->2->5->3
LinkedList<Integer> head2 = new LinkedList<>(Arrays.asList(arr2));
int x = 10;
System.out.println("Count = " + countPairs(head1, head2, x));
}
}
Python3
# Python implementation to count pairs from both linked
# lists whose sum is equal to a given value
# A Linked list node
class Node:
def __init__(self, data):
self.data = data
self.next = None
# function to insert a node at the
# beginning of the linked list
def push(head_ref, new_data):
# allocate node
new_node = Node(new_data)
# link the old list to the new node
new_node.next = head_ref
# move the head to point to the new node
head_ref = new_node
return head_ref
# function to count all pairs from both the linked
# lists whose sum is equal to a given value
def countPairs(head1, head2, x):
count = 0
# sort head1 in ascending order and
# head2 in descending order
# sort (head1), sort (head2)
# For simplicity both lists are considered to be
# sorted in the respective orders
# traverse both the lists from left to right
while head1 is not None and head2 is not None:
# if this sum is equal to 'x', then move both
# the lists to next nodes and increment 'count'
if (head1.data + head2.data) == x:
head1 = head1.next
head2 = head2.next
count += 1
# if this sum is greater than x, then
# move head2 to next node
elif (head1.data + head2.data) > x:
head2 = head2.next
# else move head1 to next node
else:
head1 = head1.next
# required count of pairs
return count
# Driver program to test above
if __name__=='__main__':
head1 = None
head2 = None
# create linked list1 1->3->5->7
# assumed to be in ascending order
head1 = push(head1, 7)
head1 = push(head1, 5)
head1 = push(head1, 3)
head1 = push(head1, 1)
# create linked list2 8->5->3->2
# assumed to be in descending order
head2 = push(head2, 2)
head2 = push(head2, 3)
head2 = push(head2, 5)
head2 = push(head2, 8)
x = 10
print("Count =", countPairs(head1, head2, x))
# This code is contributed by Aditya Sharma
JavaScript
// JavaScript implementation to count pairs from both linked
// lists whose sum is equal to a given value
// A Linked List Node
class Node{
constructor(data){
this.data = data;
this.next = null;
}
}
// Function to insert a node at the
// beginning o the linked list
function push(head_ref, new_data){
// allocate node and put in the data
let new_node = new Node(new_data);
// link the old list to the new node
new_node.next = head_ref;
// move the head to point to the new node
head_ref = new_node;
return head_ref;
}
// function to count all pairs from both the linked
// lists whose sum is equal to a given value
function countPairs(head1, head2, x){
let count = 0;
// sort head1 in ascending order and
// head2 in descending order
// sort (head1), sort (head2)
// For simplicity both lists are considered to be
// sorted in the respective orders
// traverse both the lists from left to right
while(head1 != null && head2 != null){
// if this sum is equal to 'x', then move both
// the lists to next nodes and increment 'count'
if(head1.data + head2.data == x){
head1 = head1.next;
head2 = head2.next;
count++;
}
// if this sum is greater than x, then
// move head2 to next node
else if(head1.data + head2.data > x)
head2 = head2.next;
// else move head1 to next node
else
head1 = head1.next;
// required count of pairs
}
return count;
}
// Driver program to test above
let head1 = null;
let head2 = null;
// create linked list1 1->3->5->7
// assumed to be in ascending order
head1 = push(head1, 7);
head1 = push(head1, 5);
head1 = push(head1, 3);
head1 = push(head1, 1);
// create linked list2 8->5->3->2
// assumed to be in descending order
head2 = push(head2, 2);
head2 = push(head2, 3);
head2 = push(head2, 5);
head2 = push(head2, 8);
let x = 10;
console.log("Count = " + countPairs(head1, head2, x));
// This code is contributed by Yash Agarwal(yashagarwal2852002)
C#
// C# implementation to count pairs from both linked
// lists whose sum is equal to a given value
using System;
// A Linked list node
class Node
{
public int data;
public Node next;
public Node(int data)
{
this.data = data;
this.next = null;
}
}
class Program
{
// function to insert a node at the beginning of the linked list
static Node push(Node head_ref, int new_data)
{
// allocate node
Node new_node = new Node(new_data);
// link the old list to the new node
new_node.next = head_ref;
// move the head to point to the new node
head_ref = new_node;
return head_ref;
}
// function to count all pairs from both the linked
// lists whose sum is equal to a given value
static int countPairs(Node head1, Node head2, int x)
{
int count = 0;
// sort head1 in ascending order and
// head2 in descending order
// sort (head1), sort (head2)
// For simplicity both lists are considered to be
// sorted in the respective orders
// traverse both the lists from left to right
while (head1 != null && head2 != null)
{
// if this sum is equal to 'x', then move both
// the lists to next nodes and increment 'count'
if ((head1.data + head2.data) == x)
{
head1 = head1.next;
head2 = head2.next;
count++;
}
// if this sum is greater than x, then
// move head2 to next node
else if ((head1.data + head2.data) > x)
{
head2 = head2.next;
}
// else move head1 to next node
else
{
head1 = head1.next;
}
}
// required count of pairs
return count;
}
// Driver program to test above
static void Main(string[] args)
{
Node head1 = null;
Node head2 = null;
// create linked list1 1->3->5->7
// assumed to be in ascending order
head1 = push(head1, 7);
head1 = push(head1, 5);
head1 = push(head1, 3);
head1 = push(head1, 1);
// create linked list2 8->5->3->2
// assumed to be in descending order
head2 = push(head2, 2);
head2 = push(head2, 3);
head2 = push(head2, 5);
head2 = push(head2, 8);
int x = 10;
Console.WriteLine("Count = " + countPairs(head1, head2, x));
}
}
// This code is contributed by sdeadityasharma
Time Complexity: O(n1*logn1) + O(n2*logn2)
Auxiliary Space: O(1)
Sorting will change the order of nodes. If order is important, then copy of the linked lists can be created and used.
Method 3 (Hashing): Hash table is implemented using unordered_set in C++. We store all first linked list elements in hash table. For elements of second linked list, we subtract every element from x and check the result in hash table. If result is present, we increment the count.
Implementation:
C++
// C++ implementation to count pairs from both linked
// lists whose sum is equal to a given value
#include <bits/stdc++.h>
using namespace std;
/* A Linked list node */
struct Node
{
int data;
struct Node* next;
};
// function to insert a node at the
// beginning of the linked list
void push(struct Node** head_ref, int new_data)
{
/* allocate node */
struct Node* new_node =
(struct Node*) malloc(sizeof(struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list to the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// function to count all pairs from both the linked
// lists whose sum is equal to a given value
int countPairs(struct Node* head1, struct Node* head2,
int x)
{
int count = 0;
unordered_set<int> us;
// insert all the elements of 1st list
// in the hash table(unordered_set 'us')
while (head1 != NULL)
{
us.insert(head1->data);
// move to next node
head1 = head1->next;
}
// for each element of 2nd list
while (head2 != NULL)
{
// find (x - head2->data) in 'us'
if (us.find(x - head2->data) != us.end())
count++;
// move to next node
head2 = head2->next;
}
// required count of pairs
return count;
}
// Driver program to test above
int main()
{
struct Node* head1 = NULL;
struct Node* head2 = NULL;
// create linked list1 3->1->5->7
push(&head1, 7);
push(&head1, 5);
push(&head1, 1);
push(&head1, 3);
// create linked list2 8->2->5->3
push(&head2, 3);
push(&head2, 5);
push(&head2, 2);
push(&head2, 8);
int x = 10;
cout << "Count = "
<< countPairs(head1, head2, x);
return 0;
}
Java
// Java implementation to count pairs from both linked
// lists whose sum is equal to a given value
// Note : here we use java.util.LinkedList for
// linked list implementation
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
class GFG
{
// method to count all pairs from both the linked lists
// whose sum is equal to a given value
static int countPairs(LinkedList<Integer> head1, LinkedList<Integer> head2, int x)
{
int count = 0;
HashSet<Integer> us = new HashSet<Integer>();
// insert all the elements of 1st list
// in the hash table(unordered_set 'us')
Iterator<Integer> itr1 = head1.iterator();
while (itr1.hasNext())
{
us.add(itr1.next());
}
Iterator<Integer> itr2 = head2.iterator();
// for each element of 2nd list
while (itr2.hasNext())
{
// find (x - head2->data) in 'us'
if (!(us.add(x - itr2.next())))
count++;
}
// required count of pairs
return count;
}
// Driver method
public static void main(String[] args)
{
Integer arr1[] = {3, 1, 5, 7};
Integer arr2[] = {8, 2, 5, 3};
// create linked list1 3->1->5->7
LinkedList<Integer> head1 = new LinkedList<>(Arrays.asList(arr1));
// create linked list2 8->2->5->3
LinkedList<Integer> head2 = new LinkedList<>(Arrays.asList(arr2));
int x = 10;
System.out.println("Count = " + countPairs(head1, head2, x));
}
}
Python3
# Python3 implementation to count pairs from both linked
# lists whose sum is equal to a given value
''' A Linked list node '''
class Node:
def __init__(self):
self.data = 0
self.next = None
# function to add a node at the
# beginning of the linked list
def push(head_ref, new_data):
''' allocate node '''
new_node =Node()
''' put in the data '''
new_node.data = new_data;
''' link the old list to the new node '''
new_node.next = (head_ref);
''' move the head to point to the new node '''
(head_ref) = new_node;
return head_ref
# function to count all pairs from both the linked
# lists whose sum is equal to a given value
def countPairs(head1, head2, x):
count = 0;
us = set()
# add all the elements of 1st list
# in the hash table(unordered_set 'us')
while (head1 != None):
us.add(head1.data);
# move to next node
head1 = head1.next;
# for each element of 2nd list
while (head2 != None):
# find (x - head2.data) in 'us'
if ((x - head2.data) in us):
count += 1
# move to next node
head2 = head2.next;
# required count of pairs
return count;
# Driver program to test above
if __name__=='__main__':
head1 = None;
head2 = None;
# create linked list1 3.1.5.7
head1 = push(head1, 7);
head1 = push(head1, 5);
head1 = push(head1, 1);
head1 = push(head1, 3);
# create linked list2 8.2.5.3
head2 = push(head2, 3);
head2 = push(head2, 5);
head2 = push(head2, 2);
head2 = push(head2, 8);
x = 10;
print("Count =", countPairs(head1, head2, x));
# This code is contributed by rutvik_56
C#
// C# implementation to count pairs from both linked
// lists whose sum is equal to a given value
// Note : here we use java.util.LinkedList for
// linked list implementation
using System;
using System.Collections.Generic;
class GFG
{
// method to count all pairs from both the linked lists
// whose sum is equal to a given value
static int countPairs(List<int> head1, List<int> head2, int x)
{
int count = 0;
HashSet<int> us = new HashSet<int>();
// insert all the elements of 1st list
// in the hash table(unordered_set 'us')
foreach(int itr1 in head1)
{
us.Add(itr1);
}
// for each element of 2nd list
foreach(int itr2 in head2)
{
// find (x - head2->data) in 'us'
if (!(us.Contains(x - itr2)))
count++;
}
// required count of pairs
return count;
}
// Driver code
public static void Main(String[] args)
{
int []arr1 = {3, 1, 5, 7};
int []arr2 = {8, 2, 5, 3};
// create linked list1 3->1->5->7
List<int> head1 = new List<int>(arr1);
// create linked list2 8->2->5->3
List<int> head2 = new List<int>(arr2);
int x = 10;
Console.WriteLine("Count = " + countPairs(head1, head2, x));
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// JavaScript implementation to count pairs
// from both linked lists whose sum is equal
// to a given value
// A Linked list node
class Node
{
constructor(new_data)
{
this.data = new_data;
this.next = null;
}
};
// Function to count all pairs from both the linked
// lists whose sum is equal to a given value
function countPairs(head1, head2, x)
{
let count = 0;
let us = new Set();
// Insert all the elements of 1st list
// in the hash table(unordered_set 'us')
while (head1 != null)
{
us.add(head1.data);
// Move to next node
head1 = head1.next;
}
// For each element of 2nd list
while (head2 != null)
{
// Find (x - head2.data) in 'us'
if (us.has(x - head2.data))
count++;
// Move to next node
head2 = head2.next;
}
// Required count of pairs
return count;
}
// Driver code
let head1 = null;
let head2 = null;
// Create linked list1 3.1.5.7
head1 = new Node(3)
head1.next = new Node(1)
head1.next.next = new Node(5)
head1.next.next.next = new Node(7)
// Create linked list2 8.2.5.3
head2 = new Node(8)
head2.next = new Node(2)
head2.next.next = new Node(5)
head2.next.next.next = new Node(3)
let x = 10;
document.write("Count = " +
countPairs(head1, head2, x));
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O(n1 + n2)
Auxiliary Space: O(n1), hash table should be created of the array having smaller size so as to reduce the space complexity.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
12 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Linked List Data Structure A linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read