Open In App

Count of subsequences consisting of the same element

Last Updated : 21 May, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array A[] consisting of N integers, the task is to find the total number of subsequence which contain only one distinct number repeated throughout the subsequence.

Examples:  

Input: A[] = {1, 2, 1, 5, 2} 
Output:
Explanation: 
Subsequences {1}, {2}, {1}, {5}, {2}, {1, 1} and {2, 2} satisfy the required conditions.

Input: A[] = {5, 4, 4, 5, 10, 4} 
Output: 11 
Explanation: 
Subsequences {5}, {4}, {4}, {5}, {10}, {4}, {5, 5}, {4, 4}, {4, 4}, {4, 4} and {4, 4, 4} satisfy the required conditions. 

Approach: 
Follow the steps below to solve the problem: 

  • Iterate over the array and calculate the frequency of each element in a HashMap.
  • Traverse the HashMap. For each element, calculate the number of desired subsequences possible by the equation:

 Number of subsequences possible by arr[i] = 2freq[arr[i]] - 1 

  • Calculate the total possible subsequences from the given array. 
     

Below is the implementation of the above approach:

C++
// C++ program to implement 
// the above approach 
#include <bits/stdc++.h> 
using namespace std; 

// Function to count subsequences in 
// array containing same element 
void CountSubSequence(int A[], int N) 
{ 
    // Stores the count 
    // of subsequences 
    int result = 0; 

    // Stores the frequency 
    // of array elements 
    map<int, int> mp; 

    for (int i = 0; i < N; i++) { 

        // Update frequency of A[i] 
        mp[A[i]]++; 
    } 

    for (auto it : mp) { 

        // Calculate number of subsequences 
        result 
            = result + pow(2, it.second) - 1; 
    } 

    // Print the result 
    cout << result << endl; 
} 

// Driver code 
int main() 
{ 
    int A[] = { 5, 4, 4, 5, 10, 4 }; 

    int N = sizeof(A) / sizeof(A[0]); 

    CountSubSequence(A, N); 

    return 0; 
} 
Java
// Java program to implement 
// the above approach 
import java.util.*;

class GFG{

// Function to count subsequences in
// array containing same element
static void CountSubSequence(int A[], int N)
{
    
    // Stores the count
    // of subsequences
    int result = 0;

    // Stores the frequency
    // of array elements
    Map<Integer, 
        Integer> mp = new HashMap<Integer,
                                  Integer>();

    for(int i = 0; i < N; i++)
    {
        
        // Update frequency of A[i]
        mp.put(A[i], mp.getOrDefault(A[i], 0) + 1);
    }

    for(Integer it : mp.values())
    {
        
        // Calculate number of subsequences
        result = result + (int)Math.pow(2, it) - 1;
    }
    
    // Print the result
    System.out.println(result);
}

// Driver code
public static void main(String[] args)
{
    int A[] = { 5, 4, 4, 5, 10, 4 };
    int N = A.length;
    
    CountSubSequence(A, N);
}
}

// This code is contributed by offbeat
Python3
# Python3 program to implement  
# the above approach  

# Function to count subsequences in  
# array containing same element  
def CountSubSequence(A, N):
    
    # Stores the frequency  
    # of array elements  
    mp = {}
    
    for element in A:
        if element in mp:
            mp[element] += 1
        else:
            mp[element] = 1
            
    result = 0
    
    for key, value in mp.items():
        
        # Calculate number of subsequences  
        result += pow(2, value) - 1
        
    # Print the result      
    print(result)

# Driver code
A = [ 5, 4, 4, 5, 10, 4 ]
N = len(A)

CountSubSequence(A, N)

# This code is contributed by jojo9911
C#
// C# program to implement 
// the above approach 
using System;
using System.Collections.Generic;

class GFG{ 

// Function to count subsequences in 
// array containing same element 
public static void CountSubSequence(int []A, int N) 
{ 
    
    // Stores the count 
    // of subsequences 
    int result = 0; 

    // Stores the frequency 
    // of array elements 
    var mp = new Dictionary<int, int>();

    for(int i = 0; i < N; i++) 
    { 
        
        // Update frequency of A[i] 
        if(mp.ContainsKey(A[i]))
            mp[A[i]] += 1;
        else
            mp.Add(A[i], 1);
    } 

    foreach(var it in mp) 
    { 
        
        // Calculate number of subsequences 
        result = result + 
                 (int)Math.Pow(2, it.Value) - 1; 
    } 
    
    // Print the result 
    Console.Write(result); 
} 

// Driver code 
public static void Main() 
{ 
    int []A = { 5, 4, 4, 5, 10, 4 }; 
    int N = A.Length; 
    
    CountSubSequence(A, N); 
} 
} 

// This code is contributed by grand_master
JavaScript
<script>

// Javascript program to implement 
// the above approach

// Function to count subsequences in 
// array containing same element 
function CountSubSequence(A, N) 
{ 
    // Stores the count 
    // of subsequences 
    var result = 0; 

    // Stores the frequency 
    // of array elements 
    var mp = new Map();  

    for (var i = 0; i < N; i++) { 

        // Update frequency of A[i] 
        if(mp.has(A[i]))
            mp.set(A[i], mp.get(A[i])+1)
        else
            mp.set(A[i], 1)
    } 

    mp.forEach((value, key) => {
        

        // Calculate number of subsequences 
        result 
            = result + Math.pow(2, value) - 1; 
    });

    // Print the result 
    document.write( result ); 
} 

// Driver code 
var A = [5, 4, 4, 5, 10, 4]; 
var N = A.length; 
CountSubSequence(A, N); 

// This code is contributed by itsok.
</script>

Output: 
11

 

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)
 


Next Article

Similar Reads