Count of subarrays of size K which is a permutation of numbers from 1 to K
Last Updated :
31 May, 2021
Given an array arr of distinct integers, the task is to find the count of sub-arrays of size i having all elements from 1 to i, in other words, the sub-array is any permutation of elements from 1 to i, with 1 < = i <= N.
Examples:
Input: arr[] = {2, 3, 1, 5, 4}
Output: 3
Explanation:
we have {1}, {2, 3, 1} and {2, 3, 1, 5, 4} subarray for i=1, i=3, i=5 respectively.
Permutation of size 4 and size 2 can't be made because 5 and 3 are in the way respectively.
Input: arr[] = {1, 3, 5, 4, 2}
Output: 2
Explanation:
we have {1} and {1, 3, 5, 4, 2} subarray for i=1 and i=5 respectively.
A Naive approach is to start from each index and try to find the subarray of every size(i) and check whether all elements from 1 to i are present.
Time complexity: O(N2)
An Efficient approach can be given by checking if it is possible to create a subarray of size i for every value of i from 1 to N.
As we know, every subarray of size K must be a permutation of all elements from 1 to K, knowing that we can look at the index of the numbers from 1 to N in order and calculate the index of the minimum and maximum values at every step.
- If maximum_ind - minimum_ind + 1 = K, then we have a permutation of size K, else not.
- Update the value of minimum_ind and maximum_ind at every step.
Time complexity: O(n)
Illustration:
Given Arr = {2, 3, 1, 5, 4}, let's start with min_ind = INF and max_ind = -1
- index of 1 is 2, so min_ind = min(min_ind, 2) = 2 and max_ind = max(max_ind, 2) = 2,
2-2+1 = 1 so we have a permutation of size 1 - index of 2 is 0, so min_ind = min(min_ind, 0) = 0 and max_ind = max(max_ind, 0) = 2,
2-0+1 = 3 so we don't have a permutation of size 2 - index of 3 is 1, so min_ind = min(min_ind, 1) = 0 and max_ind = max(max_ind, 1) = 2,
2-0+1 = 3 so we have a permutation of size 3 - index of 4 is 4, so min_ind = min(min_ind, 4) = 0 and max_ind = max(max_ind, 4) = 4,
4-0+1 = 5 so we don't have a permutation of size 4 - index of 5 is 3, so min_ind = min(min_ind, 3) = 0 and max_ind = max(max_ind, 4) = 4,
4-0+1 = 5 so we have a permutation of size 5
So answer is 3
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
int find_permutations(vector<int>& arr)
{
int cnt = 0;
int max_ind = -1, min_ind = 10000000;
int n = arr.size();
unordered_map<int, int> index_of;
// Save index of numbers of the array
for (int i = 0; i < n; i++) {
index_of[arr[i]] = i + 1;
}
for (int i = 1; i <= n; i++) {
// Update min and max index
// with the current index
// and check if it's a valid permutation
max_ind = max(max_ind, index_of[i]);
min_ind = min(min_ind, index_of[i]);
if (max_ind - min_ind + 1 == i)
cnt++;
}
return cnt;
}
// Driver code
int main()
{
vector<int> nums;
nums.push_back(2);
nums.push_back(3);
nums.push_back(1);
nums.push_back(5);
nums.push_back(4);
cout << find_permutations(nums);
return 0;
}
Java
// Java program to implement
// the above approach
import java.util.*;
class GFG{
public static int find_permutations(
Vector<Integer> arr)
{
int cnt = 0;
int max_ind = -1, min_ind = 10000000;
int n = arr.size();
HashMap<Integer,
Integer> index_of = new HashMap<>();
// Save index of numbers of the array
for(int i = 0; i < n; i++)
{
index_of.put(arr.get(i), i + 1);
}
for(int i = 1; i <= n; i++)
{
// Update min and max index with
// the current index and check
// if it's a valid permutation
max_ind = Math.max(max_ind, index_of.get(i));
min_ind = Math.min(min_ind, index_of.get(i));
if (max_ind - min_ind + 1 == i)
cnt++;
}
return cnt;
}
// Driver Code
public static void main(String[] args)
{
Vector<Integer> nums = new Vector<Integer>();
nums.add(2);
nums.add(3);
nums.add(1);
nums.add(5);
nums.add(4);
System.out.print(find_permutations(nums));
}
}
// This code is contributed by divyeshrabadiya07
Python3
# Python3 program to implement
# the above approach
def find_permutations(arr):
cnt = 0
max_ind = -1
min_ind = 10000000;
n = len(arr)
index_of = {}
# Save index of numbers of the array
for i in range(n):
index_of[arr[i]] = i + 1
for i in range(1, n + 1):
# Update min and max index with the
# current index and check if it's a
# valid permutation
max_ind = max(max_ind, index_of[i])
min_ind = min(min_ind, index_of[i])
if (max_ind - min_ind + 1 == i):
cnt += 1
return cnt
# Driver code
if __name__ == "__main__":
nums = []
nums.append(2)
nums.append(3)
nums.append(1)
nums.append(5)
nums.append(4)
print(find_permutations(nums))
# This code is contributed by chitranayal
C#
// C# program to implement
// the above approach
using System;
using System.Collections;
using System.Collections.Generic;
class GFG{
static int find_permutations(ArrayList arr)
{
int cnt = 0;
int max_ind = -1, min_ind = 10000000;
int n = arr.Count;
Dictionary<int,
int> index_of = new Dictionary<int,
int>();
// Save index of numbers of the array
for(int i = 0; i < n; i++)
{
index_of[(int)arr[i]] = i + 1;
}
for(int i = 1; i <= n; i++)
{
// Update min and max index with
// the current index and check
// if it's a valid permutation
max_ind = Math.Max(max_ind, index_of[i]);
min_ind = Math.Min(min_ind, index_of[i]);
if (max_ind - min_ind + 1 == i)
cnt++;
}
return cnt;
}
// Driver Code
public static void Main(string[] args)
{
ArrayList nums = new ArrayList();
nums.Add(2);
nums.Add(3);
nums.Add(1);
nums.Add(5);
nums.Add(4);
Console.Write(find_permutations(nums));
}
}
// This code is contributed by rutvik_56
JavaScript
<script>
// Javascript implementation
function find_permutations(arr)
{
var cnt = 0;
var max_ind = -1, min_ind = 10000000;
var n = arr.length;
var index_of = new Map();
// Save index of numbers of the array
for (var i = 0; i < n; i++) {
index_of.set(arr[i], i + 1);
}
for (var i = 1; i <= n; i++) {
// Update min and max index
// with the current index
// and check if it's a valid permutation
max_ind = Math.max(max_ind, index_of.get(i));
min_ind = Math.min(min_ind, index_of.get(i));
if (max_ind - min_ind + 1 == i)
cnt++;
}
return cnt;
}
var nums = [];
nums.push(2);
nums.push(3);
nums.push(1);
nums.push(5);
nums.push(4);
document.write(find_permutations(nums));
// This code contributed by shubhamsingh10
</script>
Similar Reads
Count of contiguous subarrays possible for every index by including the element at that index Given a number N which represents the size of the array A[], the task is to find the number of contiguous subarrays that can be formed for every index of the array by including the element at that index in the original array. Examples: Input: N = 4 Output: {4, 6, 6, 4} Explanation: Since the size of
8 min read
Number of subsequences of maximum length K containing no repeated elements Given an array arr[] of N elements and a positive integer K such that K ⤠N. The task is to find the number of subsequences of maximum length K i.e. subsequences of length 0, 1, 2, ..., K - 1, K that have all distinct elements. Examples: Input: arr[] = {2, 2, 3, 3, 5}, K = 2 Output: 14 All the valid
15 min read
Count unique subsequences of length K Given an array of N numbers and an integer K. The task is to print the number of unique subsequences possible of length K. Examples: Input : a[] = {1, 2, 3, 4}, k = 3 Output : 4. Unique Subsequences are: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} Input: a[] = {1, 1, 1, 2, 2, 2 }, k = 3 Output : 4 Un
11 min read
Count number of permutation of an Array having no SubArray of size two or more from original Array Given an array of distinct integer A, the task is to count the number of possible permutations of the given array A[] such that the permutations do not contain any subarray of size 2 or more from the original array.Examples:Â Â Input: A = [ 1, 3, 9 ]Â Output: 3Â All the permutation of [ 1, 3, 9 ] are :
10 min read
Count of common subarrays in two different permutations of 1 to N Given two arrays A and B of the same length N, filled with a permutation of natural numbers from 1 to N, the task is to count the number of common subarrays in A and B.Examples: Input: A = [1, 2, 3], B = [2, 3, 1] Output: 4 Explanation: The common subarrays are [1], [2], [3], [2, 3] Hence, total cou
8 min read