Count of replacements required to make the sum of all Pairs of given type from the Array equal
Last Updated :
29 Jul, 2022
Given an integer array arr of length N and an integer K, the task is to find the number of array elements to be replaced by a value from the range [1, K] such that each pair (arr[i], arr[N - 1 - i] have equal sum.
Examples :
Input: arr[] = {1, 2, 2, 1}, K = 3
Output: 1
Explanation:
Replace arr[0] with 3, so that the array becomes {3, 2, 2, 1}.
Now, it can be seen that arr[0] + arr[3] = arr[1] + arr[2] = 4.
Input: arr[] = {1, 2, 1, 2, 1, 2}
Output: 0
Explanation:
No need to make any changes as arr[0] + arr[5] = arr[1] + arr[4] = arr[2] + arr[3] = 3
Naive Approach :
The simplest approach to this problem could be like iterate for all possible values of X, which can be any number in the range 1 to 2*K, and find the number of operation require to achieve pair sum equal to X. And finally return the minimum numbers of replacement from all operations.
Time Complexity : O (N * K)
Auxiliary Space : O (1)
Efficient Approach: The above approach can be optimized by the following observations:
- X can clearly take values in the range [2, 2 * K].
- Considering pairs arr[i] and arr[N - i - 1], it can be observed that the sum of any pair can be made equal to X in 0, 1 or 2 replacements.
- Let the maximum of these two numbers be mx and minimum be mn. In one replacement, the sum of this pair will be in the range [mn + 1, mx + K].
- The pair for which mx is less than ( X - K) and mn is greater than or equal to X will need 2 replacements.
- Simply insert mx and mn for all pairs in two different vectors, sort them and apply binary search to find the number of pairs for which 2 replacements are required.
- Find the pairs which do not need any replacement by using Map by storing the frequencies of each sum.
- Finally number of pairs which require one replacement can be calculated by the equation (N / 2 - (pairs which need 2 replacements + pairs which need no replacement) ).
Follow these steps to find the solve the problem:
- Find maximum and minimum for all pairs arr [ i ], arr [ N - i - 1 ] and store them in max_values and min_values vectors respectively. Also store the frequencies of sum of all such pairs in a map.
- Sort the vectors max_values and min_values.
- Iterate from X = 2 to X = 2 * K, and for every value of X find the total number of replacements as described in the approach above. Update the answer as:
answer = min ( answer, 2 * (number of pairs for which we need to make 2 replacements) + (number of pairs for which we need to make one replacement) ).
Illustration :
arr[] = { 1, 2, 2, 1 }, K = 3
max_values = {1, 2}
min_values = {1, 2}
map = {{2, 1}, {4, 1}}
At X = 4, minimum replacement is required, that is, only 1 replacement, either conversion arr[0] to 3 or arr[3] to 3, is required to make the sum of all pairs equal to 4.
Below is the implementation of the above approach:
C++
// C++ Program to implement the
// above approach
#include <bits/stdc++.h>
#define int long long int
using namespace std;
const int inf = 1e18;
// Function to find the minimum
// replacements required
int minimumReplacement(int* arr, int N,
int K)
{
int ans = inf;
// Stores the maximum and minimum
// values for every pair of
// the form arr[i], arr[n-i-1]
vector<int> max_values;
vector<int> min_values;
// Map for storing frequencies
// of every sum formed by pairs
map<int, int> sum_equal_to_x;
for (int i = 0; i < N / 2; i++) {
// Minimum element in the pair
int mn = min(arr[i], arr[N - i - 1]);
// Maximum element in the pair
int mx = max(arr[i], arr[N - i - 1]);
// Incrementing the frequency of
// sum encountered
sum_equal_to_x[arr[i]
+ arr[N - i - 1]]++;
// Insert minimum and maximum values
min_values.push_back(mn);
max_values.push_back(mx);
}
// Sorting the vectors
sort(max_values.begin(),
max_values.end());
sort(min_values.begin(),
min_values.end());
// Iterate over all possible values of x
for (int x = 2; x <= 2 * K; x++) {
// Count of pairs for which x > x + k
int mp1
= lower_bound(max_values.begin(),
max_values.end(), x - K)
- max_values.begin();
// Count of pairs for which x < mn + 1
int mp2
= lower_bound(min_values.begin(),
min_values.end(), x)
- min_values.begin();
// Count of pairs requiring 2 replacements
int rep2 = mp1 + (N / 2 - mp2);
// Count of pairs requiring no replacements
int rep0 = sum_equal_to_x[x];
// Count of pairs requiring 1 replacement
int rep1 = (N / 2 - rep2 - rep0);
// Update the answer
ans = min(ans, rep2 * 2 + rep1);
}
// Return the answer
return ans;
}
// Driver Code
int32_t main()
{
int N = 4;
int K = 3;
int arr[] = { 1, 2, 2, 1 };
cout << minimumReplacement(arr, N, K);
return 0;
}
Java
// Java program implement
// the above approach
import java.util.*;
import java.io.*;
class GFG{
static int inf = (int)1e18;
// Function to find the minimum
// replacements required
static int minimumReplacement(int[] arr, int N,
int K)
{
int ans = inf;
// Stores the maximum and minimum
// values for every pair of
// the form arr[i], arr[n-i-1]
ArrayList<Integer> max_values = new ArrayList<>();
ArrayList<Integer> min_values = new ArrayList<>();
// Map for storing frequencies
// of every sum formed by pairs
Map<Integer,
Integer> sum_equal_to_x = new HashMap<>();
for(int i = 0; i < N / 2; i++)
{
// Minimum element in the pair
int mn = Math.min(arr[i], arr[N - i - 1]);
// Maximum element in the pair
int mx = Math.max(arr[i], arr[N - i - 1]);
// Incrementing the frequency of
// sum encountered
sum_equal_to_x.put(arr[i] +
arr[N - i - 1],
sum_equal_to_x.getOrDefault(arr[i] +
arr[N - i - 1],
0) + 1);
// Insert minimum and maximum values
min_values.add(mn);
max_values.add(mx);
}
// Sorting the vectors
Collections.sort(max_values);
Collections.sort(min_values);
// Iterate over all possible values of x
for(int x = 2; x <= 2 * K; x++)
{
// Count of pairs for which x > x + k
int mp1 = max_values.indexOf(x - K);
// Count of pairs for which x < mn + 1
int mp2 = min_values.indexOf(x);
// Count of pairs requiring 2 replacements
int rep2 = mp1 + (N / 2 - mp2);
// Count of pairs requiring no replacements
int rep0 = sum_equal_to_x.getOrDefault(x, -1);
// Count of pairs requiring 1 replacement
int rep1 = (N / 2 - rep2 - rep0);
// Update the answer
ans = Math.min(ans, rep2 * 2 + rep1);
}
// Return the answer
return ans;
}
// Driver Code
public static void main (String[] args)
{
int N = 4;
int K = 3;
int arr[] = { 1, 2, 2, 1 };
System.out.print(minimumReplacement(arr, N, K));
}
}
// This code is contributed by offbeat
Python3
# Python3 program to implement the
# above approach
inf = 10**18
def firstOccurrence(numbers, length,
searchnum):
answer = -1
start = 0
end = length - 1
while start <= end:
middle = (start + end) // 2
if numbers[middle] == searchnum:
answer = middle
end = middle - 1
elif numbers[middle] > searchnum:
end = middle - 1
else:
start = middle + 1
return answer
# Function to find the minimum
# replacements required
def minimumReplacement(arr, N, K):
ans = inf
# Stores the maximum and minimum
# values for every pair of
# the form arr[i], arr[n-i-1]
max_values = []
min_values = []
# Map for storing frequencies
# of every sum formed by pairs
sum_equal_to_x = dict()
for i in range(N // 2):
# Minimum element in the pair
mn = min(arr[i], arr[N - i - 1])
# Maximum element in the pair
mx = max(arr[i], arr[N - i - 1])
# Incrementing the frequency of
# sum encountered
if(arr[i] + arr[N - i - 1] not in sum_equal_to_x):
sum_equal_to_x[arr[i] + arr[N - i - 1]] = 0
sum_equal_to_x[arr[i] + arr[N - i - 1]] += 1
# Insert minimum and maximum values
min_values.append(mn)
max_values.append(mx)
max_values.sort()
min_values.sort()
# Iterate over all possible values of x
for x in range(2, 2 * K + 1):
# Count of pairs for which x > x + k
mp1 = firstOccurrence(
max_values, len(max_values), x - K)
# Count of pairs for which x < mn + 1
mp2 = firstOccurrence(
min_values, len(min_values), x)
# Count of pairs requiring 2 replacements
rep2 = mp1 + (N // 2 - mp2)
# Count of pairs requiring no replacements
if x in sum_equal_to_x:
rep0 = sum_equal_to_x[x]
else:
rep0 = 0
# Count of pairs requiring 1 replacement
rep1 = (N // 2 - rep2 - rep0)
# Update the answer
ans = min(ans, rep2 * 2 + rep1)
# Return the answer
return ans
# Driver Code
if __name__=='__main__':
N = 4
K = 3
arr = [ 1, 2, 2, 1 ]
print(minimumReplacement(arr, N, K))
# This code is contributed by pratham76
C#
// C# program implement
// the above approach
using System;
using System.Collections;
using System.Collections.Generic;
class GFG{
// Function to find the minimum
// replacements required
static int minimumReplacement(int[] arr, int N,
int K)
{
int ans = int.MaxValue;
// Stores the maximum and minimum
// values for every pair of
// the form arr[i], arr[n-i-1]
ArrayList max_values = new ArrayList();
ArrayList min_values = new ArrayList();
// Map for storing frequencies
// of every sum formed by pairs
Dictionary<int,
int> sum_equal_to_x = new Dictionary<int,
int>();
for(int i = 0; i < N / 2; i++)
{
// Minimum element in the pair
int mn = Math.Min(arr[i], arr[N - i - 1]);
// Maximum element in the pair
int mx = Math.Max(arr[i], arr[N - i - 1]);
// Incrementing the frequency of
// sum encountered
sum_equal_to_x[arr[i] + arr[N - i - 1]] =
sum_equal_to_x.GetValueOrDefault(arr[i] +
arr[N - i - 1], 0) + 1;
// Insert minimum and maximum values
min_values.Add(mn);
max_values.Add(mx);
}
// Sorting the vectors
max_values.Sort();
min_values.Sort();
// Iterate over all possible values of x
for(int x = 2; x <= 2 * K; x++)
{
// Count of pairs for which x > x + k
int mp1 = max_values.IndexOf(x - K);
// Count of pairs for which x < mn + 1
int mp2 = min_values.IndexOf(x);
// Count of pairs requiring 2 replacements
int rep2 = mp1 + (N / 2 - mp2);
// Count of pairs requiring no replacements
int rep0 = sum_equal_to_x.GetValueOrDefault(
x, -1);
// Count of pairs requiring 1 replacement
int rep1 = (N / 2 - rep2 - rep0);
// Update the answer
ans = Math.Min(ans, rep2 * 2 + rep1);
}
// Return the answer
return ans;
}
// Driver Code
public static void Main(string[] args)
{
int N = 4;
int K = 3;
int []arr = { 1, 2, 2, 1 };
Console.Write(minimumReplacement(arr, N, K));
}
}
// This code is contributed by rutvik_56
JavaScript
<script>
// JavaScript program to implement the
// above approach
const inf = 10**18
function firstOccurrence(numbers, length, searchnum)
{
let answer = -1
let start = 0
let end = length - 1
while(start <= end){
let middle = Math.floor((start + end)/2)
if(numbers[middle] == searchnum){
answer = middle
end = middle - 1
}
else if(numbers[middle] > searchnum)
end = middle - 1
else
start = middle + 1
}
return answer
}
// Function to find the minimum
// replacements required
function minimumReplacement(arr, N, K){
let ans = inf
// Stores the maximum and minimum
// values for every pair of
// the form arr[i], arr[n-i-1]
let max_values = []
let min_values = []
// Map for storing frequencies
// of every sum formed by pairs
let sum_equal_to_x = new Map()
for(let i=0;i<Math.floor(N / 2);i++){
// Minimum element in the pair
let mn = Math.min(arr[i], arr[N - i - 1])
// Maximum element in the pair
let mx = Math.max(arr[i], arr[N - i - 1])
// Incrementing the frequency of
// sum encountered
if(sum_equal_to_x.has(arr[i] + arr[N - i - 1])==false)
sum_equal_to_x.set(arr[i] + arr[N - i - 1],0)
sum_equal_to_x.set(arr[i] + arr[N - i - 1],
sum_equal_to_x.get(arr[i] + arr[N - i -1])+1)
// Insert minimum and maximum values
min_values.push(mn)
max_values.push(mx)
}
max_values.sort()
min_values.sort()
// Iterate over all possible values of x
for(let x=2;x<2 * K + 1;x++){
// Count of pairs for which x > x + k
let mp1 = firstOccurrence(max_values, max_values.length, x - K)
// Count of pairs for which x < mn + 1
let mp2 = firstOccurrence(min_values, min_values.length, x)
// Count of pairs requiring 2 replacements
rep2 = mp1 + (Math.floor(N / 2) - mp2)
// Count of pairs requiring no replacements
if(sum_equal_to_x.has(x)){
rep0 = sum_equal_to_x.get(x)
}
else
rep0 = 0
// Count of pairs requiring 1 replacement
rep1 = Math.floor(N /2) - rep2 - rep0
// Update the answer
ans = Math.min(ans, rep2 * 2 + rep1)
}
// Return the answer
return ans
}
// Driver Code
let N = 4
let K = 3
let arr = [ 1, 2, 2, 1 ]
document.write(minimumReplacement(arr, N, K))
// This code is contributed by shinjanpatra
</script>
Time Complexity: O(NlogN)
Auxiliary Space: O(N)
Similar Reads
Count pairs from two sorted arrays whose sum is equal to a given value x Given two sorted arrays of size m and n of distinct elements. Given a value x. The problem is to count all pairs from both arrays whose sum is equal to x. Note: The pair has an element from each array.Examples : Input : arr1[] = {1, 3, 5, 7} arr2[] = {2, 3, 5, 8} x = 10 Output : 2 The pairs are: (5,
15+ min read
Count of equal value pairs from given two Arrays such that a[i] equals b[j] Given two arrays a[] and b[] of length N and M respectively, sorted in non-decreasing order. The task is to find the number of pairs (i, j) such that, a[i] equals b[j]. Examples: Input: a[] = {1, 1, 3, 3, 3, 5, 8, 8}, b[] = {1, 3, 3, 4, 5, 5, 5}Output: 11Explanation: Following are the 11 pairs with
14 min read
Count of elements which is the sum of a subarray of the given Array Given an array arr[], the task is to count elements in an array such that there exists a subarray whose sum is equal to this element.Note: Length of subarray must be greater than 1. Examples: Input: arr[] = {1, 2, 3, 4, 5, 6, 7} Output: 4 Explanation: There are 4 such elements in array - arr[2] = 3
7 min read
Minimize replacements by integers up to K to make the sum of equidistant array elements from the end equal Given an array arr[] of even length N and an integer K, the task is to minimize the count of replacing array elements by an integer from the range [1, K] such that the sum of all pair of equidistant elements from the end of the array is equal. Examples: Input: arr[] = {1, 2, 4, 3}, K = 4Output: 1Exp
9 min read
Number of Good Pairs - Count of index pairs with equal values in an array Given an array of n elements. The task is to count the total number of indices (i, j) such that arr[i] = arr[j] and i < jExamples : Input: arr = [5, 2, 3, 5, 5, 3]Output: 4Explanation: There are 4 good pairs (0, 3), (0, 4), (3, 4), (2, 5)Input: arr = [1, 1, 1, 1]Output: 6Explanation: All 6 pairs
6 min read
Count of pairs having each element equal to index of the other from an Array Given an integer N and an array arr[] that contains elements in the range [1, N], the task is to find the count of all pairs (arr[i], arr[j]) such that i < j and i == arr[j] and j == arr[i]. Examples: Input: N = 4, arr[] = {2, 1, 4, 3} Output: 2 Explanation: All possible pairs are {1, 2} and {3,
6 min read