Count of K-size substrings having palindromic permutations
Last Updated :
15 Jul, 2025
Given string str consists of only lowercase alphabets and an integer K, the task is to count the number of substrings of size K such that any permutation of the substring is a palindrome.
Examples:
Input: str = "abbaca", K = 3
Output: 3
Explanation:
The substrings of size 3 whose permutation is palindrome are {"abb", "bba", "aca"}.
Input: str = "aaaa", K = 1
Output: 4
Explanation:
The substrings of size 1 whose permutation is palindrome are {'a', 'a', 'a', 'a'}.
Naive Approach: A naive solution is to run a two-loop to generate all substrings of size K. For each substring formed, find the frequency of each character of the substring. If at most one character has an odd frequency, then one of its permutations will be a palindrome. Increment the count for the current substring and print the final count after all the operations.
Time Complexity: O(N*K)
Count of K-size substrings having palindromic permutations using Sliding Window Technique:
The idea is to use the Window Sliding Technique and using a frequency array of size 26.
Step-by-step approach:
- Store the frequency of the first K elements of the given string in a frequency array(say freq[]).
- Using a frequency array, check the count of elements having an odd frequency. If it is less than 2, then the increment of the count of palindromic permutation.
- Now, linearly slide the window ahead till it reaches the end.
- At each iteration, decrease the count of the first element of the window by 1 and increase the count of the next element of the window by 1 and again check the count of elements in a frequency array having an odd frequency. If it is less than 2, then increase the count of the palindromic permutation.
- Repeat the above step till we reach the end of the string and print the count of palindromic permutation.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// To store the frequency array
vector<int> freq(26);
// Function to check palindromic of
// of any substring using frequency array
bool checkPalindrome()
{
// Initialise the odd count
int oddCnt = 0;
// Traversing frequency array to
// compute the count of characters
// having odd frequency
for (auto x : freq) {
if (x % 2 == 1)
oddCnt++;
}
// Returns true if odd count is atmost 1
return oddCnt <= 1;
}
// Function to count the total number
// substring whose any permutations
// are palindromic
int countPalindromePermutation(
string s, int k)
{
// Computing the frequency of
// first K character of the string
for (int i = 0; i < k; i++) {
freq[s[i] - 97]++;
}
// To store the count of
// palindromic permutations
int ans = 0;
// Checking for the current window
// if it has any palindromic
// permutation
if (checkPalindrome()) {
ans++;
}
// Start and end point of window
int i = 0, j = k;
while (j < s.size()) {
// Sliding window by 1
// Decrementing count of first
// element of the window
freq[s[i++] - 97]--;
// Incrementing count of next
// element of the window
freq[s[j++] - 97]++;
// Checking current window
// character frequency count
if (checkPalindrome()) {
ans++;
}
}
// Return the final count
return ans;
}
// Driver Code
int main()
{
// Given string str
string str = "abbaca";
// Window of size K
int K = 3;
// Function Call
cout << countPalindromePermutation(str, K)
<< endl;
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG{
// To store the frequency array
static int []freq = new int[26];
// Function to check palindromic of
// of any subString using frequency array
static boolean checkPalindrome()
{
// Initialise the odd count
int oddCnt = 0;
// Traversing frequency array to
// compute the count of characters
// having odd frequency
for(int x : freq)
{
if (x % 2 == 1)
oddCnt++;
}
// Returns true if odd count
// is atmost 1
return oddCnt <= 1;
}
// Function to count the total number
// subString whose any permutations
// are palindromic
static int countPalindromePermutation(char []s,
int k)
{
// Computing the frequency of
// first K character of the String
for(int i = 0; i < k; i++)
{
freq[s[i] - 97]++;
}
// To store the count of
// palindromic permutations
int ans = 0;
// Checking for the current window
// if it has any palindromic
// permutation
if (checkPalindrome())
{
ans++;
}
// Start and end point of window
int i = 0, j = k;
while (j < s.length)
{
// Sliding window by 1
// Decrementing count of first
// element of the window
freq[s[i++] - 97]--;
// Incrementing count of next
// element of the window
freq[s[j++] - 97]++;
// Checking current window
// character frequency count
if (checkPalindrome())
{
ans++;
}
}
// Return the final count
return ans;
}
// Driver Code
public static void main(String[] args)
{
// Given String str
String str = "abbaca";
// Window of size K
int K = 3;
// Function Call
System.out.print(countPalindromePermutation(
str.toCharArray(), K) + "\n");
}
}
// This code is contributed by Amit Katiyar
Python3
# Python3 program for the above approach
# To store the frequency array
freq = [0] * 26
# Function to check palindromic of
# of any substring using frequency array
def checkPalindrome():
# Initialise the odd count
oddCnt = 0
# Traversing frequency array to
# compute the count of characters
# having odd frequency
for x in freq:
if (x % 2 == 1):
oddCnt += 1
# Returns true if odd count is atmost 1
return oddCnt <= 1
# Function to count the total number
# substring whose any permutations
# are palindromic
def countPalindromePermutation(s, k):
# Computing the frequency of
# first K character of the string
for i in range(k):
freq[ord(s[i]) - 97] += 1
# To store the count of
# palindromic permutations
ans = 0
# Checking for the current window
# if it has any palindromic
# permutation
if (checkPalindrome()):
ans += 1
# Start and end point of window
i = 0
j = k
while (j < len(s)):
# Sliding window by 1
# Decrementing count of first
# element of the window
freq[ord(s[i]) - 97] -= 1
i += 1
# Incrementing count of next
# element of the window
freq[ord(s[j]) - 97] += 1
j += 1
# Checking current window
# character frequency count
if (checkPalindrome()):
ans += 1
# Return the final count
return ans
# Driver Code
# Given string str
str = "abbaca"
# Window of size K
K = 3
# Function call
print(countPalindromePermutation(str, K))
# This code is contributed by code_hunt
C#
// C# program for the above approach
using System;
class GFG{
// To store the frequency array
static int []freq = new int[26];
// Function to check palindromic of
// of any subString using frequency array
static bool checkPalindrome()
{
// Initialise the odd count
int oddCnt = 0;
// Traversing frequency array to
// compute the count of characters
// having odd frequency
foreach(int x in freq)
{
if (x % 2 == 1)
oddCnt++;
}
// Returns true if odd count
// is atmost 1
return oddCnt <= 1;
}
// Function to count the total number
// subString whose any permutations
// are palindromic
static int countPalindromePermutation(char []s,
int k)
{
int i = 0;
// Computing the frequency of
// first K character of the String
for(i = 0; i < k; i++)
{
freq[s[i] - 97]++;
}
// To store the count of
// palindromic permutations
int ans = 0;
// Checking for the current window
// if it has any palindromic
// permutation
if (checkPalindrome())
{
ans++;
}
// Start and end point of window
int j = k;
i = 0;
while (j < s.Length)
{
// Sliding window by 1
// Decrementing count of first
// element of the window
freq[s[i++] - 97]--;
// Incrementing count of next
// element of the window
freq[s[j++] - 97]++;
// Checking current window
// character frequency count
if (checkPalindrome())
{
ans++;
}
}
// Return the final count
return ans;
}
// Driver Code
public static void Main(String[] args)
{
// Given String str
String str = "abbaca";
// Window of size K
int K = 3;
// Function Call
Console.Write(countPalindromePermutation(
str.ToCharArray(), K) + "\n");
}
}
// This code is contributed by Amit Katiyar
JavaScript
<script>
// Javascript program for the above approach
// To store the frequency array
var freq = Array(26).fill(0);
// Function to check palindromic of
// of any substring using frequency array
function checkPalindrome()
{
// Initialise the odd count
var oddCnt = 0;
// Traversing frequency array to
// compute the count of characters
// having odd frequency
freq.forEach(x => {
if (x % 2 == 1)
oddCnt++;
});
// Returns true if odd count is atmost 1
return oddCnt <= 1;
}
// Function to count the total number
// substring whose any permutations
// are palindromic
function countPalindromePermutation( s, k)
{
// Computing the frequency of
// first K character of the string
for (var i = 0; i < k; i++) {
freq[s[i].charCodeAt(0) - 97]++;
}
// To store the count of
// palindromic permutations
var ans = 0;
// Checking for the current window
// if it has any palindromic
// permutation
if (checkPalindrome()) {
ans++;
}
// Start and end point of window
var i = 0, j = k;
while (j < s.length) {
// Sliding window by 1
// Decrementing count of first
// element of the window
freq[s[i++].charCodeAt(0) - 97]--;
// Incrementing count of next
// element of the window
freq[s[j++].charCodeAt(0) - 97]++;
// Checking current window
// character frequency count
if (checkPalindrome()) {
ans++;
}
}
// Return the final count
return ans;
}
// Driver Code
// Given string str
var str = "abbaca";
// Window of size K
var K = 3;
// Function Call
document.write( countPalindromePermutation(str, K));
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Permutation of given string that maximizes count of Palindromic substrings Given a string S, the task is to find the permutation of the string such that palindromic substrings in the string are maximum.Note: There can be multiple answers for each string. Examples: Input: S = "abcb" Output: "abbc" Explanation: "abbc" is the string with maximum number of palindromic substrin
3 min read
Permutation of given string that maximizes count of Palindromic substrings Given a string S, the task is to find the permutation of the string such that palindromic substrings in the string are maximum.Note: There can be multiple answers for each string. Examples: Input: S = "abcb" Output: "abbc" Explanation: "abbc" is the string with maximum number of palindromic substrin
3 min read
Count of Palindromic substrings in an Index range Given a string str of small alphabetic characters other than this we will be given many substrings of this string in form of index tuples. We need to find out the count of the palindromic substrings in given substring range. Examples: Input : String str = "xyaabax" Range1 = (3, 5) Range2 = (2, 3) Ou
11 min read
Print all palindrome permutations of a string Given a string s, consisting of lowercase Latin characters [a-z]. Find out all the possible palindromes that can be generated using the letters of the string and print them in lexicographical order.Note: Return an empty array if no possible palindromic string can be formed.Examples:Input: s = aabcbO
10 min read
Number of palindromic permutations | Set 1 Given string str, find count of all palindromic permutations of it. Examples : Input : str = "gfgf" Output : 2 There are two palindromic permutations fggf and gffg Input : str = "abc" Output : 0 The idea is based on below facts : A string can permute to a palindrome if number of odd occurring charac
8 min read
Find all Palindromic Partitions of a String Given a string s, find all possible ways to partition it such that every substring in the partition is a palindrome.Examples: Input: s = "geeks"Output: [[g, e, e, k, s], [g, ee, k, s]]Explanation: [g, e, e, k, s] and [g, ee, k, s] are the only partitions of "geeks" where each substring is a palindro
15+ min read