Open In App

Count numbers (smaller than or equal to N) with given digit sum

Last Updated : 15 Feb, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a number N and a sum S, find the count of numbers upto N that have digit sum equal to S.

Examples:
Input : N = 100, S = 4
Output : 5
Upto 100 only 5 numbers(4, 13, 22, 31, 40)
can produce 4 as their sum of digits.

Input : N = 1000, S = 1
Output : 4
Upto 1000 only 4 numbers(1, 10, 100 and 1000) 
can produce 1 as their sum of digits.

We can do a digit DP having state (current index, whether the currently constructed number of i digits is equal or less than the number formed by first i digits of N, the sum of digits of currently constructed number). Let dp[i][tight][sum_so_far] denotes the count of numbers whose first i digits have been considered and tight denotes whether the currently constructed number is equal or less than number formed by first i digits of N. If tight is true, then it means that currently constructed number is equal to the number constructed by first i digits of N. If it is false then it means that currently constructed number is less than the number constructed by first i digits of N. sum_so_far denotes the sum of digits of currently constructed number. Base Case: If i = number of digits in N, sum_so_far = Sum, then answer = 1 else answer is 0. Transitions: For filling (i+1)th digit we can consider following - If tight is true, then it means that our constructed number is still equal to number formed by first i digits of N. We can try our current possible digit value from 0 to (i+1)th digit of N. If we try the digit more than (i+1)th digit, then the constructed number will become greater than number formed by first i digits of N, which will violate the property that our constructed number should be <= N. If tight is false, then it means that number constructed from first i - 1 digits has become less than number constructed from the first i - 1 digit of N, So it means that our number can never exceed N, so we can choose the any digit from 0 to 9. nsum_so_far can be obtained by adding sum_so_far and current digit(currdigit). Finally we will return answer which is count of numbers upto N that have digit sum equal to S. 

C++
#include <bits/stdc++.h>
using namespace std;

// N can be max 10^18 and hence digitsum will be 162 maximum.
long long dp[18][2][162];

long long solve(int i, bool tight, int sum_so_far,
                int Sum, string number, int len)
{
    if (i == len) {

        // If sum_so_far equals to given sum then 
        // return 1 else 0
        if (sum_so_far == Sum)
            return 1;
        else
            return 0;
    }

    long long& ans = dp[i][tight][sum_so_far];
    if (ans != -1) {
        return ans;
    }

    ans = 0;
    bool ntight;
    int nsum_so_far;
    for (char currdigit = '0'; currdigit <= '9'; currdigit++) {

        // Our constructed number should not become
        // greater than N.
        if (!tight && currdigit > number[i]) {
            break;
        }

        // If tight is true then it will also be true for (i+1) digit.
        ntight = tight || currdigit < number[i];
        nsum_so_far = sum_so_far + (currdigit - '0');
        ans += solve(i + 1, ntight, nsum_so_far, Sum, number, len);
    }

    return ans;
}

// Driver code
int main()
{
    long long count = 0;
    long long sum = 4;
    string number = "100";
    memset(dp, -1, sizeof dp);
    cout << solve(0, 0, 0, sum, number, number.size());
    return 0;
}
Java
// Java program to count 2s from 0 to n 
import java.io.*;
class GFG 
{

// N can be max 10^18 and hence 
// digitsum will be 162 maximum. 
static long dp[][][] = new long[18][2][162]; 

static long solve(int i, boolean tight, int sum_so_far, 
                int Sum, String number, int len) 
{ 
    if (i == len) 
    { 

        // If sum_so_far equals to given sum then 
        // return 1 else 0 
        if (sum_so_far == Sum) 
            return 1; 
        else
            return 0; 
    } 

    long ans = dp[i][1][sum_so_far]; 
    if (ans != -1) 
    { 
        return ans; 
    } 

    ans = 0; 
    boolean ntight; 
    int nsum_so_far; 
    for (char currdigit = '0'; currdigit <= '9'; currdigit++) 
    { 

        // Our constructed number should not become 
        // greater than N. 
        if (!tight && currdigit > number.charAt(i))
        { 
            break; 
        } 

        // If tight is true then it will 
        // also be true for (i+1) digit. 
        ntight = tight || currdigit < number.charAt(i); 
        nsum_so_far = sum_so_far + (currdigit - '0'); 
        ans += solve(i + 1, ntight, nsum_so_far, 
                        Sum, number, len); 
    } 
    return ans; 
} 

// Driver code 
public static void main(String[] args) 
{
    long count = 0; 
    int sum = 4; 
    String number = "100"; 
    for(int i = 0; i < 18; i++)
    {
        for(int j = 0; j < 2; j++)
        {
            for(int k = 0; k < 162; k++)
            dp[i][j][k] = -1;
        }
    }
    System.out.println( solve(0, false, 0, sum, 
                        number, number.length())); 
    }
} 

// This code is contributed by PrinciRaj1992
Python3
# Python3 implementation of the given approach. 

def solve(i, tight, sum_so_far, Sum, number, length): 

    if i == length: 

        # If sum_so_far equals to given 
        # sum then return 1 else 0 
        if sum_so_far == Sum: 
            return 1
        else:
            return 0
    
    ans = dp[i][tight][sum_so_far] 
    if ans != -1: 
        return ans 
    
    ans = 0
    for currdigit in range(0, 10): 

        currdigitstr = str(currdigit)
        
        # Our constructed number should 
        # not become greater than N. 
        if not tight and currdigitstr > number[i]: 
            break

        # If tight is true then it will also be true for (i+1) digit. 
        ntight = tight or currdigitstr < number[i] 
        nsum_so_far = sum_so_far + currdigit 
        ans += solve(i + 1, ntight, nsum_so_far, Sum, number, length) 
    
    return ans 

# Driver code 
if __name__ == "__main__":

    count, Sum = 0, 4
    number = "100"
    dp = [[[-1 for i in range(162)] for j in range(2)] for k in range(18)]
    print(solve(0, 0, 0, Sum, number, len(number)))

# This code is contributed by Rituraj Jain
C#
// C# program to count 2s from 0 to n 
using System;

class GFG 
{ 

    // N can be max 10^18 and hence 
    // digitsum will be 162 maximum. 
    static long [ , , ]dp = new long[18,2,162]; 

    static long solve(int i, bool tight, int sum_so_far, 
                    int Sum, String number, int len) 
    { 
        if (i == len) 
        { 

            // If sum_so_far equals to given sum then 
            // return 1 else 0 
            if (sum_so_far == Sum) 
                return 1; 
            else
                return 0; 
        } 

        long ans = dp[i,1,sum_so_far]; 
        if (ans != -1) 
        { 
            return ans; 
        } 

        ans = 0; 
        bool ntight; 
        int nsum_so_far; 
        for (char currdigit = '0'; currdigit <= '9'; currdigit++) 
        { 

            // Our constructed number should not become 
            // greater than N. 
            if (!tight && currdigit > number[i]) 
            { 
                break; 
            } 

            // If tight is true then it will 
            // also be true for (i+1) digit. 
            ntight = tight || currdigit < number[i]; 
            nsum_so_far = sum_so_far + (currdigit - '0'); 
            ans += solve(i + 1, ntight, nsum_so_far, 
                            Sum, number, len); 
        } 
        return ans; 
    } 

    // Driver code 
    public static void Main(String[] args) 
    { 
        int sum = 4; 
        String number = "100"; 
        for(int i = 0; i < 18; i++) 
        { 
            for(int j = 0; j < 2; j++) 
            { 
                for(int k = 0; k < 162; k++) 
                dp[i,j,k] = -1; 
            } 
        } 
        Console.WriteLine( solve(0, false, 0, sum, 
                            number, number.Length)); 
        } 
} 

// This code has been contributed by Rajput-Ji
JavaScript
// Javascript code for the above approach
// N can be max 10^18 and hence 
// digitsum will be 162 maximum. 
let dp = new Array(18);
for (let i = 0; i < dp.length; i++) {
    dp[i] = new Array(2);
    for (let j = 0; j < 2; j++) {
        dp[i][j] = new Array(162).fill(-1);
    }
}

function solve(i, tight, sum_so_far, Sum, number, len) {
    if (i === len)
    {
    
        // If sum_so_far equals to given sum then 
        // return 1 else 0 
        if (sum_so_far === Sum)
            return 1;
        else
            return 0;
    }

    if (dp[i][1][sum_so_far] !== -1) {
        return dp[i][1][sum_so_far];
    }

    let ans = 0;
    let ntight;
    let nsum_so_far;
    for (let currdigit = '0'; currdigit <= '9'; currdigit++) {

        // Our constructed number should not become 
        // greater than N. 
        if (!tight && currdigit > number.charAt(i)) {
            break;
        }

        // If tight is true then it will 
        // also be true for (i+1) digit. 
        ntight = tight || currdigit < number.charAt(i);
        nsum_so_far = sum_so_far + (currdigit - '0');
        ans += solve(i + 1, ntight, nsum_so_far,
            Sum, number, len);
    }
    return ans;
}

// Driver code 
let count = 0;
let sum = 4;
let number = "100";
console.log(solve(0, false, 0, sum,
    number, number.length))

// This code is contributed by lokeshpotta20.
Output:
5

Time Complexity: 2(tight) * Sum * log 10(N) * 10(transitions) = 20*log 10(N)*Sum.
Auxiliary Space: O(log N * 2 * 162).

Here log N is for the number of digits in the given number N, 2 is for the boolean tight value and 162 is for the maximum sum of digits as N can be of 10^18.


Next Article
Article Tags :

Similar Reads