Open In App

Count numbers < = N whose difference with the count of primes upto them is > = K

Last Updated : 24 Jun, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two positive integers N and K, the task is to count all the numbers that satisfy the following conditions: 
If the number is num
 

  • num ? N.
  • abs(num - count) ? K where count is the count of primes upto num.


Examples: 
 

Input: N = 10, K = 3 
Output:
6, 7, 8, 9 and 10 are the valid numbers. For 6, the difference between 6 and prime numbers upto 6 (2, 3, 5) is 3 i.e. 6 - 3 = 3. For 7, 8, 9 and 10 the differences are 3, 4, 5 and 6 respectively which are ? K.
Input: N = 30, K = 13 
Output: 10 
 


 


Prerequisite: Binary Search
Approach: Observe that the function which is the difference of the number and count of prime numbers upto that number is a monotonically increasing function for a particular K. Also, if a number X is a valid number then X + 1 will also be a valid number. 
Proof : 
 

Let the function Ci denotes the count of prime numbers upto number i. Now, 
for the number X + 1 the difference is X + 1 - CX + 1 which is greater than 
or equal to the difference X - CX for the number X, i.e. (X + 1 - CX + 1) ? (X - CX). 
Thus, if (X - CX) ? S, then (X + 1 - CX + 1) ? S. 
 


Hence, we can use binary search to find the minimum valid number X and all the numbers from X to N will be valid numbers. So, the answer would be N - X + 1.
Below is the implementation of the above approach:
 

C++
// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;

const int MAX = 1000001;

// primeUpto[i] denotes count of prime
// numbers upto i
int primeUpto[MAX];

// Function to compute all prime numbers
// and update primeUpto array
void SieveOfEratosthenes()
{
    bool isPrime[MAX];
    memset(isPrime, 1, sizeof(isPrime));

    // 0 and 1 are not primes
    isPrime[0] = isPrime[1] = 0;
    for (int i = 2; i * i < MAX; i++) {

        // If i is prime
        if (isPrime[i]) {

            // Set all multiples of i as non-prime
            for (int j = i * 2; j < MAX; j += i)
                isPrime[j] = 0;
        }
    }

    // Compute primeUpto array
    for (int i = 1; i < MAX; i++) {
        primeUpto[i] = primeUpto[i - 1];
        if (isPrime[i])
            primeUpto[i]++;
    }
}

// Function to return the count
// of valid numbers
int countOfNumbers(int N, int K)
{

    // Compute primeUpto array
    SieveOfEratosthenes();
    int low = 1, high = N, ans = 0;
    while (low <= high) {
        int mid = (low + high) >> 1;

        // Check if the number is
        // valid, try to reduce it
        if (mid - primeUpto[mid] >= K) {
            ans = mid;
            high = mid - 1;
        }
        else
            low = mid + 1;
    }

    // ans is the minimum valid number
    return (ans ? N - ans + 1 : 0);
}

// Driver Code
int main()
{
    int N = 10, K = 3;
    cout << countOfNumbers(N, K);
}
Java
// Java implementation of the above approach 

public class GFG{


    static final int MAX = 1000001; 
    
    // primeUpto[i] denotes count of prime 
    // numbers upto i 
    static int primeUpto[] = new int [MAX]; 
    
    // Function to compute all prime numbers 
    // and update primeUpto array 
    static void SieveOfEratosthenes() 
    { 
        int isPrime[] = new int[MAX]; 
        for (int i=0; i < MAX ; i++ )
            isPrime[i] = 1;

        // 0 and 1 are not primes 
        isPrime[0] = isPrime[1] = 0; 
        for (int i = 2; i * i < MAX; i++) { 
    
            // If i is prime 
            if (isPrime[i] == 1) { 
    
                // Set all multiples of i as non-prime 
                for (int j = i * 2; j < MAX; j += i) 
                    isPrime[j] = 0; 
            } 
        } 
    
        // Compute primeUpto array 
        for (int i = 1; i < MAX; i++) { 
            primeUpto[i] = primeUpto[i - 1]; 
            if (isPrime[i] == 1) 
                primeUpto[i]++; 
        } 
    } 
    
    // Function to return the count 
    // of valid numbers 
    static int countOfNumbers(int N, int K) 
    { 
    
        // Compute primeUpto array 
        SieveOfEratosthenes(); 
        int low = 1, high = N, ans = 0; 
        while (low <= high) { 
            int mid = (low + high) >> 1; 
    
            // Check if the number is 
            // valid, try to reduce it 
            if (mid - primeUpto[mid] >= K) { 
                ans = mid; 
                high = mid - 1; 
            } 
            else
                low = mid + 1; 
        } 
    
        ans = ans != 0 ? N - ans + 1 : 0 ;
        // ans is the minimum valid number 
        return ans ; 
    } 
    
    // Driver Code 
     public static void main(String []args) 
    { 
        int N = 10, K = 3; 
        System.out.println(countOfNumbers(N, K)) ;
    } 
    // This code is contributed by Ryuga
}
Python3
# Python3 implementation of the above approach 

MAX = 1000001 
MAX_sqrt = MAX ** (0.5)
  
# primeUpto[i] denotes count of prime 
# numbers upto i 
primeUpto = [0] * (MAX) 
  
# Function to compute all prime numbers 
# and update primeUpto array 
def SieveOfEratosthenes(): 
 
    isPrime = [1] * (MAX) 
    
    # 0 and 1 are not primes 
    isPrime[0], isPrime[1] = 0, 0 
    for i in range(2, int(MAX_sqrt)):  
  
        # If i is prime 
        if isPrime[i] == 1:
  
            # Set all multiples of i as non-prime 
            for j in range(i * 2, MAX, i): 
                isPrime[j] = 0 
  
    # Compute primeUpto array 
    for i in range(1, MAX):
        primeUpto[i] = primeUpto[i - 1] 
        if isPrime[i] == 1: 
            primeUpto[i] += 1 
 
  
# Function to return the count 
# of valid numbers 
def countOfNumbers(N, K): 
  
    # Compute primeUpto array 
    SieveOfEratosthenes() 
    low, high, ans = 1, N, 0 
    while low <= high:  
        mid = (low + high) >> 1 
  
        # Check if the number is 
        # valid, try to reduce it 
        if mid - primeUpto[mid] >= K:  
            ans = mid 
            high = mid - 1 
         
        else:
            low = mid + 1 
  
    # ans is the minimum valid number 
    return (N - ans + 1) if ans else 0 
 
  
# Driver Code 
if __name__ == "__main__":
 
    N, K = 10, 3  
    print(countOfNumbers(N, K))
 
 # This code is contributed by Rituraj Jain
C#
// C# implementation of the above approach 
using System;

public class GFG{


    static  int MAX = 1000001; 
    
    // primeUpto[i] denotes count of prime 
    // numbers upto i 
    static int []primeUpto = new int [MAX]; 
    
    // Function to compute all prime numbers 
    // and update primeUpto array 
    static void SieveOfEratosthenes() 
    { 
        int []isPrime = new int[MAX]; 
        for (int i=0; i < MAX ; i++ )
            isPrime[i] = 1;

        // 0 and 1 are not primes 
        isPrime[0] = isPrime[1] = 0; 
        for (int i = 2; i * i < MAX; i++) { 
    
            // If i is prime 
            if (isPrime[i] == 1) { 
    
                // Set all multiples of i as non-prime 
                for (int j = i * 2; j < MAX; j += i) 
                    isPrime[j] = 0; 
            } 
        } 
    
        // Compute primeUpto array 
        for (int i = 1; i < MAX; i++) { 
            primeUpto[i] = primeUpto[i - 1]; 
            if (isPrime[i] == 1) 
                primeUpto[i]++; 
        } 
    } 
    
    // Function to return the count 
    // of valid numbers 
    static int countOfNumbers(int N, int K) 
    { 
    
        // Compute primeUpto array 
        SieveOfEratosthenes(); 
        int low = 1, high = N, ans = 0; 
        while (low <= high) { 
            int mid = (low + high) >> 1; 
    
            // Check if the number is 
            // valid, try to reduce it 
            if (mid - primeUpto[mid] >= K) { 
                ans = mid; 
                high = mid - 1; 
            } 
            else
                low = mid + 1; 
        } 
    
        ans = ans != 0 ? N - ans + 1 : 0 ;
        // ans is the minimum valid number 
        return ans ; 
    } 
    
    // Driver Code 
    public static void Main() 
    { 
        int N = 10, K = 3; 
        Console.WriteLine(countOfNumbers(N, K)) ;
    } 
    // This code is contributed by anuj_67..
}
PHP
<?php
// PHP implementation of the above approach 

$MAX = 100001; 

// primeUpto[i] denotes count of
// prime numbers upto i 
$primeUpto = array_fill(0, $MAX, 0); 

// Function to compute all prime numbers 
// and update primeUpto array 
function SieveOfEratosthenes() 
{
    global $MAX,$primeUpto;
    $isPrime = array_fill(0, $MAX, true); 

    // 0 and 1 are not primes 
    $isPrime[0] = $isPrime[1] = false; 
    for ($i = 2; $i * $i < $MAX; $i++)
    { 

        // If i is prime 
        if ($isPrime[$i]) 
        { 

            // Set all multiples of i as non-prime 
            for ($j = $i * 2; $j < $MAX; $j += $i) 
                $isPrime[$j] = false; 
        } 
    } 

    // Compute primeUpto array 
    for ($i = 1; $i < $MAX; $i++) 
    { 
        $primeUpto[$i] = $primeUpto[$i - 1]; 
        if ($isPrime[$i]) 
            $primeUpto[$i]++; 
    } 
} 

// Function to return the count 
// of valid numbers 
function countOfNumbers($N, $K) 
{ 

    // Compute primeUpto array 
    SieveOfEratosthenes();
    global $primeUpto;
    $low = 1; 
    $high = $N;
    $ans = 0; 
    while ($low <= $high)
    { 
        $mid = ($low + $high) >> 1; 

        // Check if the number is 
        // valid, try to reduce it 
        if ($mid - $primeUpto[$mid] >= $K)
        { 
            $ans = $mid; 
            $high = $mid - 1; 
        } 
        else
            $low = $mid + 1; 
    } 

    // ans is the minimum valid number 
    return ($ans ? $N - $ans + 1 : 0); 
} 

// Driver Code 
$N = 10;
$K = 3; 
echo countOfNumbers($N, $K);
    
// This code is contributed by mits 
?>
JavaScript
<script>

// Javascript implementation of the above approach

var MAX = 1000001;

// primeUpto[i] denotes count of prime
// numbers upto i
var primeUpto = Array(MAX).fill(0);

// Function to compute all prime numbers
// and update primeUpto array
function SieveOfEratosthenes()
{
    var isPrime = Array(MAX).fill(1);

    // 0 and 1 are not primes
    isPrime[0] = isPrime[1] = 0;
    for (var i = 2; i * i < MAX; i++) {

        // If i is prime
        if (isPrime[i]) {

            // Set all multiples of i as non-prime
            for (var j = i * 2; j < MAX; j += i)
                isPrime[j] = 0;
        }
    }

    // Compute primeUpto array
    for (var i = 1; i < MAX; i++) {
        primeUpto[i] = primeUpto[i - 1];
        if (isPrime[i])
            primeUpto[i]++;
    }
}

// Function to return the count
// of valid numbers
function countOfNumbers(N, K)
{

    // Compute primeUpto array
    SieveOfEratosthenes();
    var low = 1, high = N, ans = 0;
    while (low <= high) {
        var mid = (low + high) >> 1;

        // Check if the number is
        // valid, try to reduce it
        if (mid - primeUpto[mid] >= K) {
            ans = mid;
            high = mid - 1;
        }
        else
            low = mid + 1;
    }

    // ans is the minimum valid number
    return (ans ? N - ans + 1 : 0);
}

// Driver Code
var N = 10, K = 3;
document.write( countOfNumbers(N, K));


</script>

Output: 
5

 

Time Complexity: O(MAX*log(log(MAX)))

Auxiliary Space: O(MAX)


Next Article

Similar Reads