Open In App

Count number of right triangles possible with a given perimeter

Last Updated : 08 Apr, 2023
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given a perimeter P, the task is to find the number of right triangles possible with perimeter equal to p.
Examples: 
 

Input: P = 12
Output: number of right triangles = 1 
The only right angle possible is with sides 
hypotenuse = 5, perpendicular = 4 and base = 3. 

Input: p = 840
Output: number of right triangles = 8


 


So the aim is to find the number of solutions which satisfy equations a + b + c = p and a2 + b2 = c2.
A naive approach is to run two loops for a(1 to p/2) and b(a+1 to p/3) then make c=p-a-b and increase count by one if a*a + b*b == c*c               . This will take O(p^{2})               time.
An efficient approach can be found by little algebraic manipulation :
 

a^{2}+b^{2}=c^{2} or, (a+b)^{2}-2ab = c^{2} or, (p-c)^{2}-2ab = c^{2} or, p^{2}-2cp-2ab = 0 or, 2ab = p^{2}-2cp or, 2ab = p^{2}-2p(p-a-b) or, 2a(p-b) = p(p-2b) or, a = (p/2) * ((p-2b)/(p-b)) 


Since a + c > b or, p - b > b or, b < p/2. Thus iterating b from 1 to p/2, calculating a and storing only the whole number a would give all solutions for a given p. There are no right triangles are possible for odd p as right angle triangles follow the Pythagoras theorem. Use a list of pairs to store the values of a and band return the count at the end. 
Below is the implementation of the above approach. 
 

C++
// C++ program to find the number of
// right triangles with given perimeter
#include<bits/stdc++.h>
using namespace std;

// Function to return the count 
int countTriangles(int p)
{
  // making a list to store (a, b) pairs
  vector<pair<int,int>> store;

  // no triangle if p is odd
  if (p % 2 != 0)
    return 0;
  else 
  {
    int count = 1;

    for(int b = 1; b < p / 2; b++)
    {
      float a = (float)p / 2.0f * ((float)((float)p - 
                                           2.0 * (float)b) / 
                                   ((float)p - (float)b));

      int inta = (int)(a);

      if (a == inta)
      {
        // make (a, b) pair in sorted order 
        pair<int,int> ab;

        if(inta<b)
        {
          ab = {inta, b};
        }
        else
        {
          ab = {b, inta};
        }

        // check to avoid duplicates
        if(find(store.begin(), store.end(), ab) == store.end()) 
        {
          count += 1;

          // store the new pair 
          store.push_back(ab);
        }
      }

    }
    return count;
  }
}

// Driver Code
int main()
{
  int p = 840;
  cout << "number of right triangles = " << countTriangles(p);
  return 0;
}

// This code is contributed by rutvik_56.
Java
// Java code for implementation
import java.util.*;

class Pair {
  int first, second; 
  public Pair(int first, int second) { 
    this.first = first; 
    this.second = second; 
  }    
} 

class GFG {
  // Function to return the count value 
  static int countTriangles(int p) {
    // creating a list to store (a, b) pairs
    HashSet<Pair> store = new HashSet<Pair>();

    // no triangle if p is odd
    if (p % 2 != 0)
      return 0;
    else {
      int count = 1;

      for(int b = 1; b < p / 3; b++) {
        float a = (float)p / 2.0f * ((float)((float)p - 
                                             2.0 * (float)b) / 
                                     ((float)p - (float)b));

        int inta = (int)(a);

        if (a == inta) {
          // make (a, b) pair in sorted order 
          Pair ab;
          if(inta<b) {
            ab = new Pair(inta, b);
          } else {
            ab = new Pair(b, inta);
          }

          // check to avoid duplicates
          if(!store.contains(ab) ) {
            count += 1;

            // store the new pair 
            store.add(ab);
          }
        }
      }
      return count;
    }
  }

  // Drive Code
  public static void main(String[] args) {
    int p = 840;
    System.out.print("number of right triangles = " +  countTriangles(p));
  }
}
Python3
# python program to find the number of
# right triangles with given perimeter

# Function to return the count 
def countTriangles(p):
    
    # making a list to store (a, b) pairs
    store =[]

    # no triangle if p is odd
    if p % 2 != 0 : return 0
    else :
        count = 0
        for b in range(1, p // 2):

            a = p / 2 * ((p - 2 * b) / (p - b))
            inta = int(a)
            if (a == inta ):

                # make (a, b) pair in sorted order 
                ab = tuple(sorted((inta, b)))

                # check to avoid duplicates
                if ab not in store :
                    count += 1
                    # store the new pair 
                    store.append(ab)
        return count

# Driver Code
p = 840
print("number of right triangles = "+str(countTriangles(p)))
C#
// C# program to find the number of
// right triangles with given perimeter
using System;
using System.Collections.Generic;

public class GFG {
  public class pair {
    public int first, second;

    public pair(int first, int second) {
      this.first = first;
      this.second = second;
    }
  }

  // Function to return the count
  static int countTriangles(int p) 
  {
    
    // making a list to store (a, b) pairs
    HashSet<pair> store = new HashSet<pair>();

    // no triangle if p is odd
    if (p % 2 != 0)
      return 0;
    else {
      int count = 1;

      for (int b = 1; b < p / 3; b++) {
        float a = (float) p / 3 * ((float) ((float) p -
                                            2 * (float) b) / 
                                   ((float) p - (float) b));

        int inta = (int) (a);

        if (a == inta)
        {

          // make (a, b) pair in sorted order
          pair ab;
          if (inta < b) {
            ab = new pair(inta, b);

          } else {
            ab = new pair(b, inta);

          }

          // check to astatic void duplicates
          if (!store.Contains(ab)) {
            count += 1;

            // store the new pair
            store.Add(ab);
          }
        }

      }
      return count;
    }
  }

  // Driver Code
  public static void Main(String[] args) {
    int p = 840;
    Console.Write("number of right triangles = " + countTriangles(p));
  }
}

// This code is contributed by gauravrajput1
JavaScript
<script>
// Javascript program to find the number of
// right triangles with given perimeter
     class pair {
         constructor(first , second) {
            this.first = first;
            this.second = second;
        }
    }

    // Function to return the count
    function countTriangles(p) 
    {
    
        // making a list to store (a, b) pairs
        var store = new Set();

        // no triangle if p is odd
        if (p % 2 != 0)
            return 0;
        else {
            var count = 1;

            for (var b = 1; b < p / 3; b++) {
                var a =  p / 3 * ( ( p - 2 *  b) / ( p -  b));

                var inta = parseInt( a);

                if (a == inta) {
                    // make (a, b) pair in sorted order
                    var ab;
                    if (inta < b) {
                        ab = new pair(inta, b);

                    } else {
                        ab = new pair(b, inta);

                    }

                    // check to afunction duplicates
                    if (!store.has(ab)) {
                        count += 1;

                        // store the new pair
                        store.add(ab);
                    }
                }

            }
            return count;
        }
    }

    // Driver Code
        var p = 840;
        document.write("number of right triangles = " + countTriangles(p));

// This code is contributed by Rajput-Ji 
</script>

Output: 
number of right triangles = 8

 

Time complexity: O(P)

Space complexity: O(n) as auxiliary space is being used
 


Next Article

Similar Reads