Count number of right triangles possible with a given perimeter
Last Updated :
08 Apr, 2023
Given a perimeter P, the task is to find the number of right triangles possible with perimeter equal to p.
Examples:
Input: P = 12
Output: number of right triangles = 1
The only right angle possible is with sides
hypotenuse = 5, perpendicular = 4 and base = 3.
Input: p = 840
Output: number of right triangles = 8
So the aim is to find the number of solutions which satisfy equations a + b + c = p and a2 + b2 = c2.
A naive approach is to run two loops for a(1 to p/2) and b(a+1 to p/3) then make c=p-a-b and increase count by one if a*a + b*b == c*c . This will take O(p^{2}) time.
An efficient approach can be found by little algebraic manipulation :
a^{2}+b^{2}=c^{2} or, (a+b)^{2}-2ab = c^{2} or, (p-c)^{2}-2ab = c^{2} or, p^{2}-2cp-2ab = 0 or, 2ab = p^{2}-2cp or, 2ab = p^{2}-2p(p-a-b) or, 2a(p-b) = p(p-2b) or, a = (p/2) * ((p-2b)/(p-b))
Since a + c > b or, p - b > b or, b < p/2. Thus iterating b from 1 to p/2, calculating a and storing only the whole number a would give all solutions for a given p. There are no right triangles are possible for odd p as right angle triangles follow the Pythagoras theorem. Use a list of pairs to store the values of a and band return the count at the end.
Below is the implementation of the above approach.
C++
// C++ program to find the number of
// right triangles with given perimeter
#include<bits/stdc++.h>
using namespace std;
// Function to return the count
int countTriangles(int p)
{
// making a list to store (a, b) pairs
vector<pair<int,int>> store;
// no triangle if p is odd
if (p % 2 != 0)
return 0;
else
{
int count = 1;
for(int b = 1; b < p / 2; b++)
{
float a = (float)p / 2.0f * ((float)((float)p -
2.0 * (float)b) /
((float)p - (float)b));
int inta = (int)(a);
if (a == inta)
{
// make (a, b) pair in sorted order
pair<int,int> ab;
if(inta<b)
{
ab = {inta, b};
}
else
{
ab = {b, inta};
}
// check to avoid duplicates
if(find(store.begin(), store.end(), ab) == store.end())
{
count += 1;
// store the new pair
store.push_back(ab);
}
}
}
return count;
}
}
// Driver Code
int main()
{
int p = 840;
cout << "number of right triangles = " << countTriangles(p);
return 0;
}
// This code is contributed by rutvik_56.
Java
// Java code for implementation
import java.util.*;
class Pair {
int first, second;
public Pair(int first, int second) {
this.first = first;
this.second = second;
}
}
class GFG {
// Function to return the count value
static int countTriangles(int p) {
// creating a list to store (a, b) pairs
HashSet<Pair> store = new HashSet<Pair>();
// no triangle if p is odd
if (p % 2 != 0)
return 0;
else {
int count = 1;
for(int b = 1; b < p / 3; b++) {
float a = (float)p / 2.0f * ((float)((float)p -
2.0 * (float)b) /
((float)p - (float)b));
int inta = (int)(a);
if (a == inta) {
// make (a, b) pair in sorted order
Pair ab;
if(inta<b) {
ab = new Pair(inta, b);
} else {
ab = new Pair(b, inta);
}
// check to avoid duplicates
if(!store.contains(ab) ) {
count += 1;
// store the new pair
store.add(ab);
}
}
}
return count;
}
}
// Drive Code
public static void main(String[] args) {
int p = 840;
System.out.print("number of right triangles = " + countTriangles(p));
}
}
Python3
# python program to find the number of
# right triangles with given perimeter
# Function to return the count
def countTriangles(p):
# making a list to store (a, b) pairs
store =[]
# no triangle if p is odd
if p % 2 != 0 : return 0
else :
count = 0
for b in range(1, p // 2):
a = p / 2 * ((p - 2 * b) / (p - b))
inta = int(a)
if (a == inta ):
# make (a, b) pair in sorted order
ab = tuple(sorted((inta, b)))
# check to avoid duplicates
if ab not in store :
count += 1
# store the new pair
store.append(ab)
return count
# Driver Code
p = 840
print("number of right triangles = "+str(countTriangles(p)))
C#
// C# program to find the number of
// right triangles with given perimeter
using System;
using System.Collections.Generic;
public class GFG {
public class pair {
public int first, second;
public pair(int first, int second) {
this.first = first;
this.second = second;
}
}
// Function to return the count
static int countTriangles(int p)
{
// making a list to store (a, b) pairs
HashSet<pair> store = new HashSet<pair>();
// no triangle if p is odd
if (p % 2 != 0)
return 0;
else {
int count = 1;
for (int b = 1; b < p / 3; b++) {
float a = (float) p / 3 * ((float) ((float) p -
2 * (float) b) /
((float) p - (float) b));
int inta = (int) (a);
if (a == inta)
{
// make (a, b) pair in sorted order
pair ab;
if (inta < b) {
ab = new pair(inta, b);
} else {
ab = new pair(b, inta);
}
// check to astatic void duplicates
if (!store.Contains(ab)) {
count += 1;
// store the new pair
store.Add(ab);
}
}
}
return count;
}
}
// Driver Code
public static void Main(String[] args) {
int p = 840;
Console.Write("number of right triangles = " + countTriangles(p));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// Javascript program to find the number of
// right triangles with given perimeter
class pair {
constructor(first , second) {
this.first = first;
this.second = second;
}
}
// Function to return the count
function countTriangles(p)
{
// making a list to store (a, b) pairs
var store = new Set();
// no triangle if p is odd
if (p % 2 != 0)
return 0;
else {
var count = 1;
for (var b = 1; b < p / 3; b++) {
var a = p / 3 * ( ( p - 2 * b) / ( p - b));
var inta = parseInt( a);
if (a == inta) {
// make (a, b) pair in sorted order
var ab;
if (inta < b) {
ab = new pair(inta, b);
} else {
ab = new pair(b, inta);
}
// check to afunction duplicates
if (!store.has(ab)) {
count += 1;
// store the new pair
store.add(ab);
}
}
}
return count;
}
}
// Driver Code
var p = 840;
document.write("number of right triangles = " + countTriangles(p));
// This code is contributed by Rajput-Ji
</script>
Output: number of right triangles = 8
Time complexity: O(P)
Space complexity: O(n) as auxiliary space is being used
Similar Reads
Count of maximum distinct Rectangles possible with given Perimeter Given an integer N denoting the perimeter of a rectangle. The task is to find the number of distinct rectangles possible with a given perimeter. Examples Input: N = 10Output: 4Explanation: All the rectangles with perimeter 10 are following in the form of (length, breadth):(1, 4), (4, 1), (2, 3), (3,
3 min read
Count number of triangles possible for the given sides range Given four integers A, B, C, and D, the task is to find the number of distinct sets (X, Y, and Z) where X, Y and Z denotes the length of sides forming a valid triangle. A ? X ? B, B ? Y ? C, and C ? Z ? D.Examples: Input: A = 2, B = 3, C = 4, D = 5 Output: 7 Explanation: Possible Length of Side of T
10 min read
Count number of triangles possible with length of sides not exceeding N Given an integer N, the task is to find the total number of right angled triangles that can be formed such that the length of any side of the triangle is at most N. A right-angled triangle satisfies the following condition: X2 + Y2 = Z2 where Z represents the length of the hypotenuse, and X and Y re
10 min read
Count of acute, obtuse and right triangles with given sides Given an array of n positive distinct integers representing lengths of lines that can form a triangle. The task is to find the number of acute triangles, obtuse triangles, and right triangles separately that can be formed from the given array. Examples: Input : arr[] = { 2, 3, 9, 10, 12, 15 }. Outpu
13 min read
Number of triangles that can be formed with given N points Given X and Y coordinates of N points on a Cartesian plane. The task is to find the number of possible triangles with the non-zero area that can be formed by joining each point to every other point. Examples: Input: P[] = {{0, 0}, {2, 0}, {1, 1}, {2, 2}} Output: 3 Possible triangles can be [(0, 0},
9 min read