Count greater elements on the left side of every array element
Last Updated :
13 Sep, 2023
Given an array arr[] of distinct integers of size N, the task is to print the count of greater elements on the left side of each array element.
Examples :
Input: arr[] = {12, 1, 2, 3, 0, }
Output: 0 1 1 1 4
Explanation:
For index 0, no greater element exists on the left side.
For index 1, {12} is greater element on the left side.
For index 2, {12} is greater element on the left side.
For index 3, {12} is greater element on the left side.
For index 4, {12, 1, 2, 3} are greater elements on the left side.
Therefore, the output is 0 1 1 1 4.
Input: arr[] = {5, 4, 3, 2, 1}
Output: 0 1 2 3 4
Naive Approach: The simplest approach to solve the problem is to traverse the array and for every array element, traverse towards its left and compare every element with the current element. Finally, print the count of greater elements on its left for every array element.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The problem can be solved using Set containers which are implemented by Self Balancing Binary Search Tree. Follow the steps below solve the problem.
- Create an empty Set, St.
- Traverse the array and insert every element in St one by one.
- Find the previous greater element of arr[i] using upper_bound function.
- Find the distance between the previous greater element and the last element of the set using the distance function.
- Store the distance in the array, countLeftGreater[].
- Print the array.
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to print the count of greater
// elements on left of each array element
void display(int countLeftGreater[], int N)
{
for (int i = 0; i < N; i++) {
cout << countLeftGreater[i]
<< " ";
}
}
// Function to get the count of greater
// elements on left of each array element
void countGreater(int arr[], int N)
{
// Store distinct array
// elements in sorted order
set<int> St;
// Stores the count of greater
// elements on the left side
int countLeftGreater[N];
// Traverse the array
for (int i = 0; i < N; i++) {
// Insert array elements
// into the set
St.insert(arr[i]);
// Find previous greater element
auto it = St.upper_bound(arr[i]);
// Find the distance between the
// previous greater element of arr[i]
// and last element of the set
countLeftGreater[i]
= distance(it, St.end());
}
display(countLeftGreater, N);
}
// Driver Code
int main()
{
int arr[] = { 12, 1, 2, 3, 0, 11, 4 };
int N = sizeof(arr) / sizeof(arr[0]);
countGreater(arr, N);
}
Java
// Java program to implement
// the above approach
import java.util.*;
import java.lang.*;
class GFG{
// Function to print the count of greater
// elements on left of each array element
static void display(int countLeftGreater[], int N)
{
for(int i = 0; i < N; i++)
{
System.out.print(countLeftGreater[i] + " ");
}
}
// Function to get the count of greater
// elements on left of each array element
static void countGreater(int arr[], int N)
{
// Store distinct array
// elements in sorted order
Set<Integer> St = new TreeSet<>();
// Stores the count of greater
// elements on the left side
int[] countLeftGreater = new int[N];
// Traverse the array
for(int i = 0; i < N; i++)
{
// Insert array elements
// into the set
St.add(arr[i]);
int it = 0;
// Find previous greater element
Iterator<Integer> iterator = St.iterator();
while (iterator.hasNext())
{
if (arr[i] < iterator.next())
{
break;
}
it++;
}
// Find the distance between the
// previous greater element of arr[i]
// and last element of the set
countLeftGreater[i] = Math.abs(it - St.size());
}
display(countLeftGreater, N);
}
// Driver code
public static void main (String[] args)
{
int arr[] = { 12, 1, 2, 3, 0, 11, 4 };
int N = arr.length;
countGreater(arr, N);
}
}
// This code is contributed by offbeat
Python3
# Python3 program to implement
# the above approach
# Function to print the count of greater
# elements on left of each array element
def display(countLeftGreater, N):
for i in range(N):
print(countLeftGreater[i], end = " ")
# Function to get the count of greater
# elements on left of each array element
def countGreater(arr, N):
# Store distinct array
# elements in sorted order
St = set()
# Stores the count of greater
# elements on the left side
countLeftGreater = [0] * (N)
# Traverse the array
for i in range(N):
# Insert array elements
# into the set
St.add(arr[i])
it = 0
# Find previous greater element
for st in St:
if (arr[i] < st):
break
it += 1
# Find the distance between the
# previous greater element of arr[i]
# and last element of the set
countLeftGreater[i] = abs(it - len(St))
display(countLeftGreater, N)
# Driver code
if __name__ == '__main__':
arr = [ 12, 1, 2, 3, 0, 11, 4 ]
N = len(arr)
countGreater(arr, N)
# This code is contributed by Rajput-Ji
C#
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to print the count of greater
// elements on left of each array element
static void display(int []countLeftGreater, int N)
{
for(int i = 0; i < N; i++)
{
Console.Write(countLeftGreater[i] + " ");
}
}
// Function to get the count of greater
// elements on left of each array element
static void countGreater(int []arr, int N)
{
// Store distinct array
// elements in sorted order
List<int> St = new List<int>();
// Stores the count of greater
// elements on the left side
int[] countLeftGreater = new int[N];
// Traverse the array
for(int i = 0; i < N; i++)
{
// Insert array elements
// into the set
St.Add(arr[i]);
int it = 0;
St.Sort();
// Find previous greater element
foreach(int itr in St)
{
if (arr[i] < itr)
{
break;
}
it++;
}
// Find the distance between the
// previous greater element of arr[i]
// and last element of the set
countLeftGreater[i] = Math.Abs(it - St.Count);
}
display(countLeftGreater, N);
}
// Driver code
public static void Main(String[] args)
{
int []arr = { 12, 1, 2, 3, 0, 11, 4 };
int N = arr.Length;
countGreater(arr, N);
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// Js program to implement
// the above approach
// Function to print the count of greater
// elements on left of each array element
function display( countLeftGreater, N)
{
for (let i = 0; i < N; i++) {
document.write(countLeftGreater[i] ," ");
}
}
// Function to get the count of greater
// elements on left of each array element
function countGreater(arr, N)
{
// Store distinct array
// elements in sorted order
let St = new Set();
// Stores the count of greater
// elements on the left side
let countLeftGreater = [];
// Traverse the array
for (let i = 0; i < N; i++) {
// Insert array elements
// into the set
St.add(arr[i]);
// Find previous greater element
let it = 0;
// Find previous greater element
//let a = Array.from(St);
//a.sort(function(a,b){return a-b});
for (let st of St){
if (arr[i] < st)
it += 1;
}
// Find the distance between the
// previous greater element of arr[i]
// and last element of the set
countLeftGreater[i]
= Math.abs(it);
}
display(countLeftGreater, N);
}
// Driver Code
let arr = [ 12, 1, 2, 3, 0, 11, 4 ];
let N = arr.length;
countGreater(arr, N);
</script>
Time Complexity: O(N2) because distance function takes O(N) but the above implementation is very simple and works better than the naive algorithm in the average case.
Auxiliary Space: O(N)
Note: Above approach works for unique elements but for duplicate elements just replace Set with Multiset.
Similar Reads
Count of array elements which are greater than all elements on its left Given an array arr[] of size n, the task is to count the number of array elements such that all the elements to its left are strictly smaller than it.Note: The first element of the array will be considered to be always satisfying the condition.Examples :Input: arr[] = [2, 4, 5, 6]Output: 4Explanatio
8 min read
Count of larger elements on right side of each element in an array Given an array arr[] consisting of N integers, the task is to count the number of greater elements on the right side of each array element. Examples: Input: arr[] = {3, 7, 1, 5, 9, 2} Output: {3, 1, 3, 1, 0, 0} Explanation: For arr[0], the elements greater than it on the right are {7, 5, 9}. For arr
15+ min read
Count of Array elements greater than all elements on its left and next K elements on its right Given an array arr[], the task is to print the number of elements which are greater than all the elements on its left as well as greater than the next K elements on its right. Examples: Input: arr[] = { 4, 2, 3, 6, 4, 3, 2}, K = 2 Output: 2 Explanation: arr[0](= 4): arr[0] is the 1st element in the
14 min read
Count array elements having at least one smaller element on its left and right side Given an array arr[] of length N, the task is to find the number of elements in array arr[] which contains at least one smaller element on its left and right. Examples: Input: arr[] = {3, 9, 4, 6, 7, 5}Output: 3Explanation: Following 3 array elements satisfy the necessary conditions: arr[1] (= 9) ha
6 min read
Count of Array elements greater than all elements on its left and at least K elements on its right Given an array A[ ] consisting of N distinct integers, the task is to find the number of elements which are strictly greater than all the elements preceding it and strictly greater than at least K elements on its right. Examples: Input: A[] = {2, 5, 1, 7, 3, 4, 0}, K = 3 Output: 2 Explanation: The o
15+ min read