Open In App

Count distinct sequences obtained by replacing all elements of subarrays having equal first and last elements with the first element any number of times

Last Updated : 24 Feb, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] consisting of N integers, the task is to find the number of different sequences that can be formed after performing the below operation on the given array arr[] any number of times.

Choose two indices i and j such that arr[i] is equal to arr[j] and update all the elements in the range [i, j] in the array to arr[i].

Examples:

Input: arr[] = {1, 2, 1, 2, 2}
Output: 3
Explanation:
There can be three possible sequences:

  1. The initial array {1, 2, 1, 2, 2}.
  2. Choose indices 0 and 2 and as arr[0](= 1) and arr[2](= 1) are equal and update the array elements arr[] over the range [0, 2] to arr[0](= 1). The new sequence obtained is {1, 1, 1, 2, 2}.
  3. Choose indices 1 and 3 and as arr[1](= 2) and arr[3](= 2) are equal and update the array elements arr[] over the range [1, 3] to arr[1](= 2). The new sequence obtained is {1, 2, 2, 2, 2}.

Therefore, the total number of sequences formed is 3.

Input: arr[] = {4, 2, 5, 4, 2, 4}
Output: 5

Approach: This problem can be solved using Dynamic Programming. Follow the steps below to solve the problem:

  • Initialize an auxiliary array dp[] where dp[i] stores the number of different sequences that are possible by first i elements of the given array arr[] and initialize dp[0] as 1.
  • Initialize an array lastOccur[] where lastOccur[i] stores the last occurrence of element arr[i] in the first i elements of the array arr[] and initialize lastOccur[0] with -1.
  • Iterate over the range [1, N] using the variable i and perform the following  steps:
    • Update the value of dp[i] as dp[i - 1].
    • If last occurrence of the current element is not equal to -1 and less than (i - 1), then add the value of dp[lastOccur[curEle]] to dp[i].
    • Update the value of lastOccur[curEle] as i.
  • After completing the above steps, print the value of dp[N] as the result.

Below is the implementation of the above approach:

C++
// C++ program for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to count number of sequences
// satisfying the given criteria
void countPossiblities(int arr[], int n)
{
    // Stores the index of the last
    // occurrence of the element
    int lastOccur[100000];
    for (int i = 0; i < n; i++) {
        lastOccur[i] = -1;
    }

    // Initialize an array to store the
    // number of different sequences
    // that are possible of length i
    int dp[n + 1];

    // Base Case
    dp[0] = 1;

    for (int i = 1; i <= n; i++) {

        int curEle = arr[i - 1];

        // If no operation is applied
        // on ith element
        dp[i] = dp[i - 1];

        // If operation is applied on
        // ith element
        if (lastOccur[curEle] != -1
            & lastOccur[curEle] < i - 1) {
            dp[i] += dp[lastOccur[curEle]];
        }

        // Update the last occurrence
        // of curEle
        lastOccur[curEle] = i;
    }

    // Finally, print the answer
    cout << dp[n] << endl;
}

// Driver Code
int main()
{
    int arr[] = { 1, 2, 1, 2, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
    countPossiblities(arr, N);

    return 0;
}
Java
// Java Program for the above approach
import java.io.*;

class GFG {

    // Function to count number of sequences
    // satisfying the given criteria
    static void countPossiblities(int arr[], int n)
    {
        // Stores the index of the last
        // occurrence of the element
        int[] lastOccur = new int[100000];
        for (int i = 0; i < n; i++) {
            lastOccur[i] = -1;
        }

        // Initialize an array to store the
        // number of different sequences
        // that are possible of length i
        int[] dp = new int[n + 1];

        // Base Case
        dp[0] = 1;

        for (int i = 1; i <= n; i++) {

            int curEle = arr[i - 1];

            // If no operation is applied
            // on ith element
            dp[i] = dp[i - 1];

            // If operation is applied on
            // ith element
            if (lastOccur[curEle] != -1
                & lastOccur[curEle] < i - 1) {
                dp[i] += dp[lastOccur[curEle]];
            }

            // Update the last occurrence
            // of curEle
            lastOccur[curEle] = i;
        }

        // Finally, print the answer
        System.out.println(dp[n]);
    }

    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 1, 2, 2 };
        int N = arr.length;
        countPossiblities(arr, N);

    }
}

    // This code is contributed by Potta Lokesh
Python3
# Python3 program for the above approach

# Function to count number of sequences
# satisfying the given criteria
def countPossiblities(arr, n):
    
    # Stores the index of the last
    # occurrence of the element
    lastOccur = [-1] * 100000

    # Initialize an array to store the
    # number of different sequences
    # that are possible of length i
    dp = [0] * (n + 1)

    # Base Case
    dp[0] = 1

    for i in range(1, n + 1):
        curEle = arr[i - 1]

        # If no operation is applied
        # on ith element
        dp[i] = dp[i - 1]

        # If operation is applied on
        # ith element
        if (lastOccur[curEle] != -1 and 
            lastOccur[curEle] < i - 1):
            dp[i] += dp[lastOccur[curEle]]

        # Update the last occurrence
        # of curEle
        lastOccur[curEle] = i

    # Finally, print the answer
    print(dp[n])

# Driver Code
if __name__ == '__main__':
    
    arr = [ 1, 2, 1, 2, 2 ]
    N = len(arr)
    
    countPossiblities(arr, N)

# This code is contributed by mohit kumar 29
C#
// C# Program for the above approach
using System;

class GFG {

    // Function to count number of sequences
    // satisfying the given criteria
    static void countPossiblities(int[] arr, int n)
    {
        // Stores the index of the last
        // occurrence of the element
        int[] lastOccur = new int[100000];
        for (int i = 0; i < n; i++) {
            lastOccur[i] = -1;
        }

        // Initialize an array to store the
        // number of different sequences
        // that are possible of length i
        int[] dp = new int[n + 1];

        // Base Case
        dp[0] = 1;

        for (int i = 1; i <= n; i++) {

            int curEle = arr[i - 1];

            // If no operation is applied
            // on ith element
            dp[i] = dp[i - 1];

            // If operation is applied on
            // ith element
            if (lastOccur[curEle] != -1
                & lastOccur[curEle] < i - 1) {
                dp[i] += dp[lastOccur[curEle]];
            }

            // Update the last occurrence
            // of curEle
            lastOccur[curEle] = i;
        }

        // Finally, print the answer
        Console.WriteLine(dp[n]);
    }

    public static void Main()
    {
        int[] arr = { 1, 2, 1, 2, 2 };
        int N = arr.Length;
        countPossiblities(arr, N);
    }
}

// This code is contributed by subham348.
JavaScript
 <script>
        // JavaScript Program for the above approach

        // Function to count number of sequences
        // satisfying the given criteria
        function countPossiblities(arr, n)
        {
        
            // Stores the index of the last
            // occurrence of the element
            let lastOccur = new Array(100000);
            for (let i = 0; i < n; i++) {
                lastOccur[i] = -1;
            }

            // Initialize an array to store the
            // number of different sequences
            // that are possible of length i
            dp = new Array(n + 1);

            // Base Case
            dp[0] = 1;

            for (let i = 1; i <= n; i++) {

                let curEle = arr[i - 1];

                // If no operation is applied
                // on ith element
                dp[i] = dp[i - 1];

                // If operation is applied on
                // ith element
                if (lastOccur[curEle] != -1
                    & lastOccur[curEle] < i - 1) {
                    dp[i] += dp[lastOccur[curEle]];
                }

                // Update the last occurrence
                // of curEle
                lastOccur[curEle] = i;
            }

            // Finally, print the answer
            document.write(dp[n] + "<br>");
        }

        // Driver Code

        let arr = [1, 2, 1, 2, 2];
        let N = arr.length;
        countPossiblities(arr, N);


    // This code is contributed by Potta Lokesh

    </script>

Output:

3

Time Complexity: O(N)
Auxiliary Space: O(N)


Next Article

Similar Reads