Convert an Array to reduced form using Vector of pairs
Last Updated :
17 Oct, 2023
Given an array with n distinct elements, convert the given array to a form where all elements are in range from 0 to n-1. The order of elements is same, i.e., 0 is placed in place of smallest element, 1 is placed for second smallest element, ... n-1 is placed for largest element.
Input: arr[] = {10, 40, 20}
Output: arr[] = {0, 2, 1}
Input: arr[] = {5, 10, 40, 30, 20}
Output: arr[] = {0, 1, 4, 3, 2}
We have discussed simple and hashing based solutions. In this post, a new solution is discussed. The idea is to create a vector of pairs. Every element of pair contains element and index. We sort vector by array values. After sorting, we copy indexes to original array.
C++
#include <bits/stdc++.h>
using namespace std;
// Converts arr[0..n-1] to reduced form.
void convert(int arr[], int n)
{
// A vector of pairs. Every element of
// pair contains array element and its
// index
vector<pair<int, int> > v;
// Put all elements and their index in
// the vector
for (int i = 0; i < n; i++)
v.push_back(make_pair(arr[i], i));
// Sort the vector by array values
sort(v.begin(), v.end());
// Put indexes of modified vector in arr[]
for (int i = 0; i < n; i++)
arr[v[i].second] = i;
}
// Utility function to print an array.
void printArr(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Driver program to test above method
int main()
{
int arr[] = { 10, 20, 15, 12, 11, 50 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Given Array is \n";
printArr(arr, n);
convert(arr, n);
cout << "\n\nConverted Array is \n";
printArr(arr, n);
return 0;
}
Java
// Java equivalent of the code
import java.util.*;
public class Main {
// Converts arr[0..n-1] to reduced form.
static void convert(int arr[], int n)
{
// A vector of pairs. Every element of
// pair contains array element and its
// index
List<Pair> v = new ArrayList<>();
// Put all elements and their index in
// the vector
for (int i = 0; i < n; i++)
v.add(new Pair(arr[i], i));
// Sort the vector by array values
Collections.sort(v, new SortByVal());
// Put indexes of modified vector in arr[]
for (int i = 0; i < n; i++)
arr[v.get(i).getIndex()] = i;
}
// Utility function to print an array.
static void printArr(int arr[], int n)
{
for (int i = 0; i < n; i++)
System.out.print(arr[i] + " ");
}
// Driver program to test above method
public static void main (String[] args)
{
int arr[] = { 10, 20, 15, 12, 11, 50 };
int n = arr.length;
System.out.println("Given Array is \n");
printArr(arr, n);
convert(arr, n);
System.out.println("\n\nConverted Array is \n");
printArr(arr, n);
}
// class to store array elements and its
// index.
static class Pair {
int val;
int index;
public Pair(int val, int index)
{
this.val = val;
this.index = index;
}
public int getVal()
{
return val;
}
public int getIndex()
{
return index;
}
}
// Comparator to sort the vector elements
// according to their values
static class SortByVal implements Comparator<Pair> {
public int compare(Pair a, Pair b)
{
return a.getVal() - b.getVal();
}
}
}
Python3
# Converts arr[0..n-1] to reduced form.
def convert(arr, n):
# A list of tuples. Every element of
# tuple contains array element and its
# index
v = []
# Put all elements and their index in
# the list
for i in range(n):
v.append((arr[i], i))
# Sort the list by array values
v.sort()
# Put indexes of modified list in arr[]
for i in range(n):
arr[v[i][1]] = i
# Utility function to print an array.
def printArr(arr, n):
for i in range(n):
print(arr[i], end=" ")
# Driver program to test above method
arr = [10, 20, 15, 12, 11, 50]
n = len(arr)
print("Given Array is ")
printArr(arr, n)
convert(arr, n)
print("\n\nConverted Array is ")
printArr(arr, n)
# This code is contributed by Prasad Kandekar(prasad264)
C#
using System;
using System.Collections.Generic;
public class Program {
// Converts arr[0..n-1] to reduced form.
static void Convert(int[] arr, int n)
{
// A list of pairs. Every element of pair contains
// array element and its index
List<Pair> v = new List<Pair>();
// Put all elements and their index in the list
for (int i = 0; i < n; i++)
v.Add(new Pair(arr[i], i));
// Sort the list by array values
v.Sort(new SortByVal());
// Put indexes of modified list in arr[]
for (int i = 0; i < n; i++)
arr[v[i].GetIndex()] = i;
}
// Utility function to print an array.
static void PrintArr(int[] arr, int n)
{
for (int i = 0; i < n; i++)
Console.Write(arr[i] + " ");
}
// Driver program to test above method
public static void Main()
{
int[] arr = { 10, 20, 15, 12, 11, 50 };
int n = arr.Length;
Console.WriteLine("Given Array is ");
PrintArr(arr, n);
Convert(arr, n);
Console.WriteLine("\n\nConverted Array is");
PrintArr(arr, n);
}
// class to store array elements and its index.
class Pair {
int val;
int index;
public Pair(int val, int index)
{
this.val = val;
this.index = index;
}
public int GetVal() { return val; }
public int GetIndex() { return index; }
}
// Comparator to sort the list elements
// according to their values
class SortByVal : IComparer<Pair> {
public int Compare(Pair a, Pair b)
{
return a.GetVal() - b.GetVal();
}
}
}
JavaScript
// Converts arr[0..n-1] to reduced form.
function convert(arr, n) {
// An array of pairs. Every element of
// pair contains array element and its
// index
let v = [];
// Put all elements and their index in
// the array
for (let i = 0; i < n; i++)
v.push([arr[i], i]);
// Sort the array by array values
v.sort((a, b) => a[0] - b[0]);
// Put indexes of modified array in arr[]
for (let i = 0; i < n; i++)
arr[v[i][1]] = i;
}
// Utility function to print an array.
function printArr(arr, n) {
for (let i = 0; i < n; i++)
console.log(arr[i] + " ");
}
// Driver program to test above method
let arr = [10, 20, 15, 12, 11, 50];
let n = arr.length;
console.log("Given Array is ");
printArr(arr, n);
convert(arr, n);
console.log("\n\nConverted Array is ");
printArr(arr, n);
// This code is contributed by prasad264
OutputGiven Array is
10 20 15 12 11 50
Converted Array is
0 4 3 2 1 5
Time Complexity : O(n Log n)
Auxiliary Space : O(n)
Another Approach:
1) Create a copy of the input array and sort it in non-decreasing order.
2) Create a map where each element of the sorted array is mapped to its corresponding index in the range 0 to n-1.
3) Traverse the input array and for each element, replace it with the value obtained from the map.
C++
#include <bits/stdc++.h>
using namespace std;
// Converts arr[0..n-1] to reduced form.
void convert(int arr[], int n)
{
// Make a copy of the input array
int sorted_arr[n];
copy(arr, arr+n, sorted_arr);
// Sort the copy in non-decreasing order
sort(sorted_arr, sorted_arr+n);
// Map each element of the sorted array to its index in the range 0 to n-1
unordered_map<int, int> mp;
for (int i = 0; i < n; i++) {
mp[sorted_arr[i]] = i;
}
// Replace each element of the input array with its corresponding index
for (int i = 0; i < n; i++) {
arr[i] = mp[arr[i]];
}
}
// Utility function to print an array.
void printArr(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Driver program to test above method
int main()
{
int arr[] = { 10, 20, 15, 12, 11, 50 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Given Array is \n";
printArr(arr, n);
convert(arr, n);
cout << "\n\nConverted Array is \n";
printArr(arr, n);
return 0;
}
Java
import java.util.*;
public class Main {
// Converts arr[0..n-1] to reduced form.
public static void convert(int arr[], int n)
{
// Make a copy of the input array
int[] sorted_arr = Arrays.copyOf(arr, n);
// Sort the copy in non-decreasing order
Arrays.sort(sorted_arr);
// Map each element of the sorted array to its index
// in the range 0 to n-1
HashMap<Integer, Integer> mp
= new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
mp.put(sorted_arr[i], i);
}
// Replace each element of the input array with its
// corresponding index
for (int i = 0; i < n; i++) {
arr[i] = mp.get(arr[i]);
}
}
// Utility function to print an array.
public static void printArr(int arr[], int n)
{
for (int i = 0; i < n; i++) {
System.out.print(arr[i] + " ");
}
}
// Driver program to test above method
public static void main(String[] args)
{
int arr[] = { 10, 20, 15, 12, 11, 50 };
int n = arr.length;
System.out.println("Given Array is ");
printArr(arr, n);
convert(arr, n);
System.out.println("\n\nConverted Array is ");
printArr(arr, n);
}
}
// This code is contributed by Prajwal Kandekar
Python3
def convert(arr, n):
# Make a copy of the input array
sorted_arr = arr.copy()
# Sort the copy in non-decreasing order
sorted_arr.sort()
# Map each element of the sorted array to its index in the range 0 to n-1
mp = {}
for i in range(n):
mp[sorted_arr[i]] = i
# Replace each element of the input array with its corresponding index
for i in range(n):
arr[i] = mp[arr[i]]
def print_arr(arr, n):
for i in range(n):
print(arr[i], end=' ')
print()
# Driver program to test above method
if __name__ == '__main__':
arr = [10, 20, 15, 12, 11, 50]
n = len(arr)
print("Given Array is ")
print_arr(arr, n)
convert(arr, n)
print("\nConverted Array is ")
print_arr(arr, n)
# This code is contributed by Prajwal Kandekar
C#
using System;
using System.Collections.Generic;
public class GFG {
// Converts arr[0..n-1] to reduced form.
static void Convert(int[] arr, int n)
{
// Make a copy of the input array
int[] sortedArr = new int[n];
Array.Copy(arr, sortedArr, n);
// Sort the copy in ascending order
Array.Sort(sortedArr);
// Map each element of the sorted array to its index
// in the range 0 to n-1
Dictionary<int, int> mp
= new Dictionary<int, int>();
for (int i = 0; i < n; i++) {
mp.Add(sortedArr[i], i);
}
// Replace each element of the input array with its
// corresponding index
for (int i = 0; i < n; i++) {
arr[i] = mp[arr[i]];
}
}
// Utility function to print an array.
static void PrintArr(int[] arr, int n)
{
for (int i = 0; i < n; i++) {
Console.Write(arr[i] + " ");
}
}
// Driver program to test above method
static public void Main()
{
int[] arr = { 10, 20, 15, 12, 11, 50 };
int n = arr.Length;
Console.WriteLine("Given Array is ");
PrintArr(arr, n);
Convert(arr, n);
Console.WriteLine("\n\nConverted Array is ");
PrintArr(arr, n);
}
}
//This code is contributed by Rohit Singh
JavaScript
function convert(arr, n) {
// Make a copy of the input array
let sorted_arr = [...arr];
// Sort the copy in non-decreasing order
sorted_arr.sort((a, b) => a - b);
// Map each element of the sorted array to its index in the range 0 to n-1
let mp = {};
for (let i = 0; i < n; i++) {
mp[sorted_arr[i]] = i;
}
// Replace each element of the input array with its corresponding index
for (let i = 0; i < n; i++) {
arr[i] = mp[arr[i]];
}
}
function print_arr(arr, n) {
for (let i = 0; i < n; i++) {
process.stdout.write(`${arr[i]} `);
}
console.log();
}
// Driver program to test above method
let arr = [10, 20, 15, 12, 11, 50];
let n = arr.length;
process.stdout.write("Given Array is \n");
print_arr(arr, n);
convert(arr, n);
process.stdout.write("\nConverted Array is \n");
print_arr(arr, n);
OutputGiven Array is
10 20 15 12 11 50
Converted Array is
0 4 3 2 1 5
Time Complexity: O(n log n) where n is the size of the input array. This is because the function creates a copy of the input array using the "copy" function, which takes O(n) time, sorts the copy using the "sort" function, which has a time complexity of O(n log n)
Space Complexity: O(n) we are using extra space as a map.
Similar Reads
Sorting Algorithms
A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to Sorting Techniques â Data Structure and Algorithm Tutorials
Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure. Why Sorting Algorithms are ImportantThe sorting algorithm is important in Com
3 min read
Most Common Sorting Algorithms
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Heap Sort - Data Structures and Algorithms Tutorials
Heap sort is a comparison-based sorting technique based on Binary Heap Data Structure. It can be seen as an optimization over selection sort where we first find the max (or min) element and swap it with the last (or first). We repeat the same process for the remaining elements. In Heap Sort, we use
14 min read
Counting Sort - Data Structures and Algorithms Tutorials
Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
9 min read