Open In App

Convert an Array to reduced for using Binary Search

Last Updated : 28 Nov, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] consisting of N distinct integers, the task is to convert the given array into a sequence of first N non-negative integers, i.e. [0, N - 1] such that the order of the elements is the same, i.e. 0 is placed at the index of the smallest array element, 1 at the index of the second smallest element, and so on.

Examples:

Input: arr[] = {10, 40, 20}
Output: 0 2 1

Input: arr[] = {5, 10, 40, 30, 20}
Output: 0 1 4 3 2

 

Hashing-Based Approach: Please refer to the Set 1 post of this article for the hashing-based approach. 
Time Complexity: O(N* log N)
Auxiliary Space: O(N)

Vector Of Pairs Based Approach: Please refer to the Set 2 post of this article for the approach using the vector of pairs
Time Complexity: O(N* log N)
Auxiliary Space: O(N)

Binary Search-based Approach: Follow the steps to solve the problem:

Below is the implementation of the above approach:

C++
// C++ program for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to find the reduced form
// of the given array arr[]
void convert(int arr[], int n)
{
    // Stores the sorted form of the
    // the given array arr[]
    int brr[n];

    for (int i = 0; i < n; i++)
        brr[i] = arr[i];

    // Sort the array brr[]
    sort(brr, brr + n);

    // Traverse the given array arr[]
    for (int i = 0; i < n; i++) {

        int l = 0, r = n - 1, mid;

        // Perform the Binary Search
        while (l <= r) {

            // Calculate the value of
            // mid
            mid = (l + r) / 2;

            if (brr[mid] == arr[i]) {

                // Print the current
                // index and break
                cout << mid << ' ';
                break;
            }

            // Update the value of l
            else if (brr[mid] < arr[i]) {
                l = mid + 1;
            }

            // Update the value of r
            else {
                r = mid - 1;
            }
        }
    }
}

// Driver Code
int main()
{
    int arr[] = { 10, 20, 15, 12, 11, 50 };
    int N = sizeof(arr) / sizeof(arr[0]);
    convert(arr, N);

    return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;

public class GFG
{

    // Function to find the reduced form
    // of the given array arr[]
    static void convert(int arr[], int n)
    {
      
        // Stores the sorted form of the
        // the given array arr[]
        int brr[] = new int[n];

        for (int i = 0; i < n; i++)
            brr[i] = arr[i];

        // Sort the array brr[]
        Arrays.sort(brr);

        // Traverse the given array arr[]
        for (int i = 0; i < n; i++) {

            int l = 0, r = n - 1, mid;

            // Perform the Binary Search
            while (l <= r) {

                // Calculate the value of
                // mid
                mid = (l + r) / 2;

                if (brr[mid] == arr[i]) {

                    // Print the current
                    // index and break
                    System.out.print(mid + " ");
                    break;
                }

                // Update the value of l
                else if (brr[mid] < arr[i]) {
                    l = mid + 1;
                }

                // Update the value of r
                else {
                    r = mid - 1;
                }
            }
        }
    }

    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 10, 20, 15, 12, 11, 50 };
        int N = arr.length;
        convert(arr, N);
    }
}

// This code is contributed by Kingash.
Python3
# Python3 program for the above approach

# Function to find the reduced form
# of the given array arr[]
def convert(arr, n):
  
    # Stores the sorted form of the
    # the given array arr[]
    brr = [i for i in arr]

    # Sort the array brr[]
    brr = sorted(brr)

    # Traverse the given array arr[]
    for i in range(n):

        l, r, mid = 0, n - 1, 0

        # Perform the Binary Search
        while (l <= r):

            # Calculate the value of
            # mid
            mid = (l + r) // 2

            if (brr[mid] == arr[i]):

                # Print the current
                # index and break
                print(mid,end=" ")
                break
            # Update the value of l
            elif (brr[mid] < arr[i]):
                l = mid + 1
            # Update the value of r
            else:
                r = mid - 1

# Driver Code
if __name__ == '__main__':
    arr=[10, 20, 15, 12, 11, 50]
    N = len(arr)
    convert(arr, N)

    # This code is contributed by mohit kumar 29.
C#
// C# program for the above approach
using System;

class GFG{

// Function to find the reduced form
// of the given array arr[]
static void convert(int[] arr, int n)
{
    
    // Stores the sorted form of the
    // the given array arr[]
    int[] brr = new int[n];

    for(int i = 0; i < n; i++)
        brr[i] = arr[i];

    // Sort the array brr[]
    Array.Sort(brr);

    // Traverse the given array arr[]
    for(int i = 0; i < n; i++)
    {
        int l = 0, r = n - 1, mid;

        // Perform the Binary Search
        while (l <= r) 
        {
            
            // Calculate the value of
            // mid
            mid = (l + r) / 2;

            if (brr[mid] == arr[i])
            {
                
                // Print the current
                // index and break
                Console.Write(mid + " ");
                break;
            }

            // Update the value of l
            else if (brr[mid] < arr[i]) 
            {
                l = mid + 1;
            }

            // Update the value of r
            else
            {
                r = mid - 1;
            }
        }
    }
}

// Driver Code
public static void Main(string[] args)
{
    int[] arr = { 10, 20, 15, 12, 11, 50 };
    int N = arr.Length;
    
    convert(arr, N);
}
}

// This code is contributed by ukasp
JavaScript
<script>

// javascript program for the above approach

// Function to find the reduced form
// of the given array arr[]
function convert(arr, n)
{
    // Stores the sorted form of the
    // the given array arr[]
    var brr = Array(n).fill(0);
    var i;
    for (i = 0; i < n; i++)
        brr[i] = arr[i];

    // Sort the array brr[]
    brr.sort();

    // Traverse the given array arr[]
    for (i = 0; i < n; i++) {

        var l = 0, r = n - 1, mid;

        // Perform the Binary Search
        while (l <= r) {

            // Calculate the value of
            // mid
            mid = parseInt((l + r) / 2,10);

            if (brr[mid] == arr[i]) {

                // Print the current
                // index and break
                document.write(mid + ' ');
                break;
            }

            // Update the value of l
            else if (brr[mid] < arr[i]) {
                l = mid + 1;
            }

            // Update the value of r
            else {
                r = mid - 1;
            }
        }
    }
}

// Driver Code
    var arr = [10, 20, 15, 12, 11, 50];
    var N = arr.length;
    convert(arr, N);

// This code is contributed by SURENDRA_GANGWAR.
</script>

Output: 
0 4 3 2 1 5

 

Time Complexity: O(N * log N)
Auxiliary Space: O(N)


Next Article

Similar Reads