Rapid Spanning Tree Protocol Last Updated : 29 Nov, 2021 Comments Improve Suggest changes Like Article Like Report RSTP is the more improved and advanced version of STP which is a layer 2 protocol that prevents bridge loops and broadcast storms in local networks with redundant connections. Rapid spanning tree protocol has faster convergence and it is also backward-compatible with STP. To make sure a loop-free topology, the Rapid Spanning Tree Protocol (RSTP) precludes some of the connections which permit only a single active path between any two devices. All these disabled connections can be used as backup paths in case an active connection fails. The IEEE standard for Rapid spanning tree protocol is 802.1w. Similarities between STP and RSTP: In both STP and RSTP bridge with the lowest Bridge ID is elected as Root Bridge.BPDUs in both STP and RSTP are forwarded between switches.Roots and designated ports are elected in the same manner as they are elected in STP and their functionality is also identical to that of STP.Working of RSTP RSTP follows a strict set of rules by which the switches decide the best way to forward the traffic on the network free from any redundancy. When RSPT is enabled on a network, the spanning tree algorithm decides the configuration of the spanning tree automatically. The topmost bridge of the spanning tree is the Root bridge in RSTP and it is in charge of sending all the network topology information to other switches present in the network. This plays an important role when hardware failures occur, or some other topology changes occur. So, the most efficient alternate paths are established without any delay. Port Roles in RSTP There are four-port roles in RSTP Root Port: The port with the best path cost is elected as the root port. A non-root bridge can only have one root port. Root ports forward data to the bridge.Designated Port: It is a non-root port that is used as a forwarding port for every LAN segment.Backup Port: It is a backup path to a segment where another bridge port is already connected. These ports receive BPDUs from their switches but they remain in a blocked state.Alternate Port: It is a Backup port with a less desirable path cost. All such ports remain in a blocked state.Port States in RSTP Rapid spanning tree protocol supports three port states. Discarding: In the discarding state, no user data is sent over the port.Learning: In the learning state the ports learn about the MAC address but it doesn’t forward any frames.Forwarding: In the forwarding state the ports can send data and are fully operational.Working of Port States: At first, a switch port starts in a discarding state, a discarding port does not forward any frames nor does it learn MAC addresses, and it also listens for BPDUs. Backup and alternate ports remain discarding. In RSTP if a port is elected as a Root port or Designated port, the transition will directly take place from a discarding state to a learning state. Hence, RSTP doesn’t need a listening state. A learning port adds MAC addresses into the Content addressable memory table; However, it can not forward frames. In the next phase, a learning port transitions into a forwarding state. A forwarding port is completely functional i.e., it learns MAC addresses, sends and listens for BPDUs, and forwards frames. Benefits of RSTP:Prevents network loops.Prevents redundancy.Faster Convergence.Backward compatible with STP.Every switch generates BPDU and sends them out at the hello interval.Switches don’t need artificial forward delay timers. In STP BPDUs are generated only by the root bridge. If a non-root bridge receives a BPDU from the root bridge on its root port, it will pass on the BPDU downstream to its neighbors. This Convergence process is slower and STP relies on forwarding delay timers to make sure a loop-free environment, this takes a lot of time. In RSTP, switches just handshake directly with their neighboring switches, this allows quick synchronization in the topology. This lets ports promptly change from a discarding state to a forwarding state without a delay timer. Types of ports in RSTP There are three types of ports in RSTP Edge: It is a port that connects to a host.Root: It is a port that connects to another switch, and it has the best path cost to the root bridge.Point-to-point: It is a port that connects to another switch and it has the potential of becoming the designated port for a segment.RSTP algorithm RSTP algorithm follows some general steps: Determining root bridge: The switch with the lowest bridge priority is elected as the root bridge. In the case of a tie, a tiebreaker based on the MAC address is used to decide the root bridge i.e., the switch with the lowest MAC address is elected as the root bridge.All root bridge interfaces are put in forwarding state: In the forwarding state, all the ports learn MAC addresses, and also send and receive data.All non-root switches select a root port: Based on root cost the root port is the best path to the root bridge. There is only one root port in a non-root switch.Selecting designated port: these ports are allowed to forward traffic and they are selected based on port cost. All leftover root bridge ports are designated ports.Rest of the ports in blocking state: these ports do not pass any data to other switches and they also don’t learn MAC addresses. Comment More infoAdvertise with us Next Article TCP/IP Model K kmbh Follow Improve Article Tags : Computer Subject Computer Networks Similar Reads CCNA Tutorial for Beginners This CCNA Tutorial is well-suited for the beginner as well as professionals, and It will cover all the basic to advanced concepts of CCNA like Components of Computer Networking, Transport Layer, Network Layer, CCNA training, Cisco Networking, Network Design, Routing and Switching, etc. which are req 8 min read Basics of Computer NetworkingNetwork and CommunicationNetworks and communication involve connecting different systems and devices to share data and information. This setup includes hardware like computers, routers, switches, and modems, as well as software protocols that manage how data flows between these devices. Protocols such as TCP/IP and HTTP are 8 min read LAN Full Form - Local area networkA Local area network (LAN) is a network that is used to link devices in a single office, building, or campus of up to a short distance. LAN is restricted in size. In LAN networks internet speed is from 10 Mbps to 100 Mbps (But now much higher speeds can be achieved). The most common topologies used 10 min read What is OSI Model? - Layers of OSI ModelThe OSI (Open Systems Interconnection) Model is a set of rules that explains how different computer systems communicate over a network. OSI Model was developed by the International Organization for Standardization (ISO). The OSI Model consists of 7 layers and each layer has specific functions and re 13 min read TCP/IP ModelThe TCP/IP model is a framework that is used to model the communication in a network. It is mainly a collection of network protocols and organization of these protocols in different layers for modeling the network.It has four layers, Application, Transport, Network/Internet and Network Access.While 7 min read How Data Encapsulation and De-encapsulation Works?Data encapsulation and de-encapsulation are fundamental concepts in computer networking and communication protocols. These processes are essential for transferring data across networks efficiently and securely. What is Data Encapsulation?Encapsulation is the process of adding additional information 4 min read Components of Computer NetworkingNIC Full Form - Network Interface CardNIC stands for Network Interface Card. NIC is additionally called Ethernet or physical or network card. NIC is one of the major and imperative components of associating a gadget with the network. Each gadget that must be associated with a network must have a network interface card. Even the switches 4 min read What is a Network Switch and How Does it Work?The Switch is a network device that is used to segment the networks into different subnetworks called subnets or LAN segments. It is responsible for filtering and forwarding the packets between LAN segments based on MAC address. Switches have many ports, and when data arrives at any port, the destin 9 min read What is Network Hub and How it Works?Hub in networking plays a vital role in data transmission and broadcasting. A hub is a hardware device used at the physical layer to connect multiple devices in the network. Hubs are widely used to connect LANs. A hub has multiple ports. Unlike a switch, a hub cannot filter the data, i.e. it cannot 6 min read Introduction of a RouterNetwork devices are physical devices that allow hardware on a computer network to communicate and interact with one another. For example Repeater, Hub, Bridge, Switch, Routers, Gateway, Router, and NIC, etc. What is a Router?A Router is a networking device that forwards data packets between computer 12 min read Types of Ethernet CableAn ethernet cable allows the user to connect their devices such as computers, mobile phones, routers, etc, to a Local Area Network (LAN) that will allow a user to have internet access, and able to communicate with each other through a wired connection. It also carries broadband signals between devic 5 min read Transport LayerTransport Layer responsibilitiesThe transport Layer is the second layer in the TCP/IP model and the fourth layer in the OSI model. It is an end-to-end layer used to deliver messages to a host. It is termed an end-to-end layer because it provides a point-to-point connection rather than hop-to-hop, between the source host and destin 5 min read Introduction of Ports in ComputersA port is basically a physical docking point which is basically used to connect the external devices to the computer, or we can say that A port act as an interface between the computer and the external devices, e.g., we can connect hard drives, printers to the computer with the help of ports. Featur 3 min read What is TCP (Transmission Control Protocol)?Transmission Control Protocol (TCP) is a connection-oriented protocol for communications that helps in the exchange of messages between different devices over a network. It is one of the main protocols of the TCP/IP suite. In OSI model, it operates at the transport layer(Layer 4). It lies between th 5 min read TCP 3-Way Handshake ProcessThe TCP 3-Way Handshake is a fundamental process that establishes a reliable connection between two devices over a TCP/IP network. It involves three steps: SYN (Synchronize), SYN-ACK (Synchronize-Acknowledge), and ACK (Acknowledge). During the handshake, the client and server exchange initial sequen 6 min read User Datagram Protocol (UDP)User Datagram Protocol (UDP) is a Transport Layer protocol. UDP is a part of the Internet Protocol suite, referred to as UDP/IP suite. Unlike TCP, it is an unreliable and connectionless protocol. So, there is no need to establish a connection before data transfer. The UDP helps to establish low-late 10 min read Network LayerIPv4 Datagram HeaderIP stands for Internet Protocol and v4 stands for Version Four (IPv4). IPv4 was the primary version brought into action for production within the ARPANET in 1983. IP version four addresses are 32-bit integers which will be expressed in decimal notation. In this article, we will discuss about IPv4 da 4 min read Difference between Unicast, Broadcast and Multicast in Computer NetworkThe cast term here signifies some data(stream of packets) is being transmitted to the recipient(s) from the client(s) side over the communication channel that helps them to communicate. Let's see some of the "cast" concepts that are prevailing in the computer networks field. What is Unicast?This typ 5 min read Structure and Types of IP AddressIP addresses are an important part of the Internet. It can be represented as Internet Protocol address. A unique address that identifies the device over the network. They are made up of a series of numbers or alphanumeric characters that help us to identify devices on a network. Almost every device 8 min read IPv4 AddressingWhat is IPv4?IP stands for Internet Protocol version v4 stands for Version Four (IPv4), is the most widely used system for identifying devices on a network. It uses a set of four numbers, separated by periods (like 192.168.0.1), to give each device a unique address. This address helps data find its way from one 5 min read Role of Subnet MaskA subnet mask is a 32-bit number that separates an IP address into two parts: the network ID and the host ID. It tells devices which portion of the address belongs to the network and which identifies individual devices. By doing this it helps to determine which devices belong to the same local netwo 5 min read Introduction of Classful IP AddressingAn IP address is an address that has information about how to reach a specific host, especially outside the LAN. An IP address is a 32-bit unique address having an address space of 232.Classful IP addressing is a way of organizing and managing IP addresses, which are used to identify devices on a ne 11 min read SubnettingIntroduction To SubnettingSubnetting is the process of dividing a large network into smaller networks called "subnets." Subnets provide each group of devices with their own space to communicate, which ultimately helps the network to work easily. This also boosts security and makes it easier to manage the network, as each sub 8 min read Classless Inter Domain Routing (CIDR)Classless Inter-Domain Routing (CIDR) is a method of IP address allocation and IP routing that allows for more efficient use of IP addresses. CIDR is based on the idea that IP addresses can be allocated and routed based on their network prefix rather than their class, which was the traditional way o 6 min read Introduction of Variable Length Subnet Mask (VLSM)Variable Length Subnet Mask (VLSM) is a technique used in IP network design to create subnets with different subnet masks. VLSM allows network administrators to allocate IP addresses more efficiently and effectively, by using smaller subnet masks for subnets with fewer hosts and larger subnet masks 6 min read Private IP Addresses in NetworkingPrivate IP addresses play an important role in computer networking, permitting organizations to build internal networks that communicate securely without conflicting with public addresses. In this article, we will see private IP addresses in networking.What is a Private IP Address?Private IP Address 8 min read Data Link LayerWhat is Ethernet?A LAN is a data communication network connecting various terminals or computers within a building or limited geographical area. The connection between the devices could be wired or wireless. Although Ethernet has been largely replaced by wireless networks, wired networking still uses Ethernet more f 9 min read What is MAC Address?To communicate or transfer data from one computer to another, we need an address. In computer networks, various types of addresses are introduced; each works at a different layer. A MAC address, which stands for Media Access Control Address, is a physical address that works at the Data Link Layer. I 12 min read What is an IP Address?Imagine every device on the internet as a house. For you to send a letter to a friend living in one of these houses, you need their home address. In the digital world, this home address is what we call an IP (Internet Protocol) Address. It's a unique string of numbers separated by periods (IPv4) or 14 min read Physical LayerEthernet Frame FormatThe basic frame format which is required for all MAC implementation is defined in IEEE 802.3 standard. Though several optional formats are being used to extend the protocol's basic capability. Ethernet frame starts with the Preamble and SFD, both work at the physical layer. The ethernet header conta 8 min read What is Power Over Ethernet (POE)?Power Over Ethernet (POE) is a technique used for building wired Ethernet local area networks (LANs) which use Ethernet data cables instead of normal electrical power cords and wiring to carry the electrical current required to operate each device. The transfer of power through network cabling is po 8 min read Cisco Networking DevicesNetwork Devices (Hub, Repeater, Bridge, Switch, Router, Gateways and Brouter)Network devices are physical devices that allow hardware on a computer network to communicate and interact with each other. Network devices like hubs, repeaters, bridges, switches, routers, gateways, and brouter help manage and direct data flow in a network. They ensure efficient communication betwe 9 min read Collision Detection in CSMA/CDCSMA/CD (Carrier Sense Multiple Access/ Collision Detection) is a media access control method that was widely used in Early Ethernet technology/LANs when there used to be shared Bus Topology and each node ( Computers) was connected by Coaxial Cables. Nowadays Ethernet is Full Duplex and Topology is 7 min read Collision Domain and Broadcast Domain in Computer NetworkPrerequisite - Network Devices, Transmission Modes The most common network devices used are routers and switches. But we still hear people talking about hubs, repeaters, and bridges. Do you ever wonder why these former devices are preferred over the latter ones? One reason could be: 'because they ar 5 min read Difference between layer-2 and layer-3 switchesA switch is a device that sends a data packet to a local network. What is the advantage of a hub? A hub floods the network with the packet and only the destination system receives that packet while others just drop due to which the traffic increases a lot. To solve this problem switch came into the 5 min read Like