Check if an Array is a permutation of numbers from 1 to N : Set 2
Last Updated :
12 Jul, 2025
Given an array arr containing N positive integers, the task is to check if the given array arr represents a permutation or not.
A sequence of N integers is called a permutation if it contains all integers from 1 to N exactly once.
Examples:
Input: arr[] = {1, 2, 5, 3, 2}
Output: No
Explanation:
The given array contains 2 twice, and 4 is missing for the array to represent a permutation of length 5.
Input: arr[] = {1, 2, 5, 3, 4}
Output: Yes
Explanation:
The given array contains all integers from 1 to 5 exactly once. Hence, it represents a permutation of length 5.
Naive Approach: in O(N2) Time
This approach is mentioned here
Another Approach: in O(N) Time and O(N) Space
This approach is mentioned here.
Efficient Approach: Using HashTable
- Create a HashTable of N size to store the frequency count of each number from 1 to N
- Traverse through the given array and store the frequency of each number in the HashTable.
- Then traverse the HashTable and check if all the numbers from 1 to N have a frequency of 1 or not.
- Print "Yes" if the above condition is True, Else "No".
Below is the implementation of the above approach:
CPP
// C++ program to decide if an array
// represents a permutation or not
#include <bits/stdc++.h>
using namespace std;
// Function to check if an
// array represents a permutation or not
string permutation(int arr[], int N)
{
int hash[N + 1] = { 0 };
// Counting the frequency
for (int i = 0; i < N; i++) {
hash[arr[i]]++;
}
// Check if each frequency is 1 only
for (int i = 1; i <= N; i++) {
if (hash[i] != 1)
return "No";
}
return "Yes";
}
// Driver code
int main()
{
int arr[] = { 1, 1, 5, 5, 3 };
int n = sizeof(arr) / sizeof(int);
cout << permutation(arr, n) << endl;
return 0;
}
Java
// Java program to decide if an array
// represents a permutation or not
class GFG{
// Function to check if an
// array represents a permutation or not
static String permutation(int arr[], int N)
{
int []hash = new int[N + 1];
// Counting the frequency
for (int i = 0; i < N; i++) {
hash[arr[i]]++;
}
// Check if each frequency is 1 only
for (int i = 1; i <= N; i++) {
if (hash[i] != 1)
return "No";
}
return "Yes";
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1, 1, 5, 5, 3 };
int n = arr.length;
System.out.print(permutation(arr, n) +"\n");
}
}
// This code is contributed by Princi Singh
Python3
# Python3 program to decide if an array
# represents a permutation or not
# Function to check if an
# array represents a permutation or not
def permutation(arr, N) :
hash = [0]*(N + 1);
# Counting the frequency
for i in range(N) :
hash[arr[i]] += 1;
# Check if each frequency is 1 only
for i in range(1, N + 1) :
if (hash[i] != 1) :
return "No";
return "Yes";
# Driver code
if __name__ == "__main__" :
arr = [ 1, 1, 5, 5, 3 ];
n = len(arr);
print(permutation(arr, n));
# This code is contributed by Yash_R
C#
// C# program to decide if an array
// represents a permutation or not
using System;
class GFG{
// Function to check if an
// array represents a permutation or not
static string permutation(int []arr, int N)
{
int []hash = new int[N + 1];
// Counting the frequency
for (int i = 0; i < N; i++) {
hash[arr[i]]++;
}
// Check if each frequency is 1 only
for (int i = 1; i <= N; i++) {
if (hash[i] != 1)
return "No";
}
return "Yes";
}
// Driver code
public static void Main(string[] args)
{
int []arr = { 1, 1, 5, 5, 3 };
int n = arr.Length;
Console.Write(permutation(arr, n) +"\n");
}
}
// This code is contributed by Yash_R
JavaScript
<script>
// JavaScript program to decide if an array
// represents a permutation or not
// Function to check if an
// array represents a permutation or not
function permutation(arr, N)
{
var hash = Array(N+1).fill(0);
// Counting the frequency
for (var i = 0; i < N; i++) {
hash[arr[i]]++;
}
// Check if each frequency is 1 only
for (var i = 1; i <= N; i++) {
if (hash[i] != 1)
return "No";
}
return "Yes";
}
// Driver code
var arr = [1, 1, 5, 5, 3];
var n = arr.length;
document.write( permutation(arr, n));
</script>
Time Complexity: O(N)
Auxiliary Space Complexity: O(N)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem