Open In App

Check if all the elements can be made of same parity by inverting adjacent elements

Last Updated : 22 Nov, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a binary matrix. In a single operation, you are allowed to choose two adjacent elements and invert their parity. The operation can be performed any number of times. Write a program to check if all the elements of the array can be converted into a single parity. 
Examples: 
 

Input: a[] = {1, 0, 1, 1, 0, 1} 
Output: Yes 
Invert 2nd and 3rd elements to get {1, 1, 0, 1, 0, 1} 
Invert 3rd and 4th elements to get {1, 1, 1, 0, 0, 1} 
Invert 4th and 5th elements to get {1, 1, 1, 1, 1, 1}
Input: a[] = {1, 1, 1, 0, 0, 0} 
Output: No 
 


 


Approach: Since only adjacent elements are needed to be flipped, hence the count of parities will give the answer to the question. Only even number of elements are flipped at a time, so if both the parity's count is odd then it is not possible to make all the parity same else it is possible.
Below is the implementation of the above approach: 
 

C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;

// Function to check if parity
// can be made same or not
bool flipsPossible(int a[], int n)
{

    int count_odd = 0, count_even = 0;

    // Iterate and count the parity
    for (int i = 0; i < n; i++) {

        // Odd
        if (a[i] & 1)
            count_odd++;

        // Even
        else
            count_even++;
    }

    // Condition check
    if (count_odd % 2 && count_even % 2)
        return false;

    else
        return true;
}

// Drivers code
int main()
{
    int a[] = { 1, 0, 1, 1, 0, 1 };
    int n = sizeof(a) / sizeof(a[0]);

    if (flipsPossible(a, n))
        cout << "Yes";
    else
        cout << "No";

    return 0;
}
Java
// Java implementation of the approach 
public class GFG 
{
    
    // Function to check if parity 
    // can be made same or not 
    static boolean flipsPossible(int []a, int n) 
    { 
    
        int count_odd = 0, count_even = 0; 
    
        // Iterate and count the parity 
        for (int i = 0; i < n; i++) 
        { 
    
            // Odd 
            if ((a[i] & 1) == 1) 
                count_odd++; 
    
            // Even 
            else
                count_even++; 
        } 
    
        // Condition check 
        if (count_odd % 2 == 1 && count_even % 2 == 1) 
            return false; 
    
        else
            return true; 
    } 
    
    // Drivers code 
    public static void main (String[] args) 
    { 
        int []a = { 1, 0, 1, 1, 0, 1 }; 
        int n = a.length; 
    
        if (flipsPossible(a, n)) 
            System.out.println("Yes"); 
        else
            System.out.println("No"); 
    } 
}

// This code is contributed by AnkitRai01
Python3
# Python3 implementation of the approach 

# Function to check if parity 
# can be made same or not 
def flipsPossible(a, n) : 

    count_odd = 0; count_even = 0; 

    # Iterate and count the parity 
    for i in range(n) :

        # Odd 
        if (a[i] & 1) :
            count_odd += 1; 

        # Even 
        else :
            count_even += 1; 

    # Condition check 
    if (count_odd % 2 and count_even % 2) :
        return False; 
    else :
        return True; 

# Driver Code 
if __name__ == "__main__" : 

    a = [ 1, 0, 1, 1, 0, 1 ]; 
    
    n = len(a); 

    if (flipsPossible(a, n)) :
        print("Yes"); 
    else :
        print("No"); 

# This code is contributed by AnkitRai01
C#
// C# implementation of the approach 
using System;

class GFG 
{
    
    // Function to check if parity 
    // can be made same or not 
    static bool flipsPossible(int []a, int n) 
    { 
    
        int count_odd = 0, count_even = 0; 
    
        // Iterate and count the parity 
        for (int i = 0; i < n; i++) 
        { 
    
            // Odd 
            if ((a[i] & 1) == 1) 
                count_odd++; 
    
            // Even 
            else
                count_even++; 
        } 
    
        // Condition check 
        if (count_odd % 2 == 1 && count_even % 2 == 1) 
            return false; 
    
        else
            return true; 
    } 
    
    // Drivers code 
    public static void Main(String[] args) 
    { 
        int []a = { 1, 0, 1, 1, 0, 1 }; 
        int n = a.Length; 
    
        if (flipsPossible(a, n)) 
            Console.WriteLine("Yes"); 
        else
            Console.WriteLine("No"); 
    } 
}

// This code is contributed by 29AjayKumar
JavaScript
<script>

// JavaScript implementation of the approach 

    
// Function to check if parity 
// can be made same or not 
function flipsPossible(a, n){


    let count_odd = 0;
    let count_even = 0;

    // Iterate and count the parity 
    for (let i = 0; i < n; i++) 
    { 

        // Odd 
        if ((a[i] & 1) == 1) 
            count_odd++;
        // Even 
        else
            count_even++; 
    }
    
    // Condition check 
    if (count_odd % 2 == 1 && count_even % 2 == 1) 
        return false;
    else
        return true;
} 
    
// Drivers code 

let a = [1, 0, 1, 1, 0, 1];
let n = a.length; 

if (flipsPossible(a, n)) 
    document.write("Yes");
else
    document.write("No");
    
</script>
    

Output
Yes

Time Complexity: O(N)

Auxiliary Space: O(1)


Next Article

Similar Reads