Ceiling in right side for every element in an array
Last Updated :
22 Mar, 2023
Given an array of integers, find the closest greater element for every element. If there is no greater element then print -1
Examples:
Input : arr[] = {10, 5, 11, 10, 20, 12}
Output : 10 10 12 12 -1 -1
Input : arr[] = {50, 20, 200, 100, 30}
Output : 100 30 -1 -1 -1
A simple solution is to run two nested loops. We pick an outer element one by one. For every picked element, we traverse the right side array and find the closest greater or equal element. Time complexity of this solution is O(n*n)
A better solution is to use sorting. We sort all elements, then for every element, traverse toward the right until we find a greater element (Note that there can be multiple occurrences of an element).
An efficient solution is to use Self Balancing BST (Implemented as set in C++ and TreeSet in Java). In a Self Balancing BST, we can do both insert and ceiling operations in O(Log n) time.
Implementation:
C++
// C++ program to find ceiling on right side for
// every element.
#include <bits/stdc++.h>
using namespace std;
void closestGreater(int arr[], int n)
{
set<int> s;
vector<int> ceilings;
// Find smallest greater or equal element
// for every array element
for (int i = n - 1; i >= 0; i--) {
auto greater = s.lower_bound(arr[i]);
if (greater == s.end())
ceilings.push_back(-1);
else
ceilings.push_back(*greater);
s.insert(arr[i]);
}
for (int i = n - 1; i >= 0; i--)
cout << ceilings[i] << " ";
}
int main()
{
int arr[] = { 50, 20, 200, 100, 30 };
closestGreater(arr, 5);
return 0;
}
Java
// Java program to find ceiling on right side for
// every element.
import java.util.*;
class TreeSetDemo {
public static void closestGreater(int[] arr)
{
int n = arr.length;
TreeSet<Integer> ts = new TreeSet<Integer>();
ArrayList<Integer> ceilings = new ArrayList<Integer>(n);
// Find smallest greater or equal element
// for every array element
for (int i = n - 1; i >= 0; i--) {
Integer greater = ts.ceiling(arr[i]);
if (greater == null)
ceilings.add(-1);
else
ceilings.add(greater);
ts.add(arr[i]);
}
for (int i = n - 1; i >= 0; i--)
System.out.print(ceilings.get(i) + " ");
}
public static void main(String[] args)
{
int[] arr = { 50, 20, 200, 100, 30 };
closestGreater(arr);
}
}
Python3
# Python program to find ceiling on right side for
# every element.
import bisect
def closestGreater(arr, n):
s = []
ceilings = []
# Find smallest greater or equal element
# for every array element
for i in range(n - 1, -1, -1):
greater = bisect.bisect_left(s, arr[i])
if greater == len(s):
ceilings.append(-1)
else:
ceilings.append(s[greater])
s.insert(greater, arr[i])
for i in range(n - 1, -1, -1):
print(ceilings[i], end=" ")
arr = [50, 20, 200, 100, 30]
closestGreater(arr, 5)
# This code is contributed by codebraxnzt
C#
// C# program to find ceiling on right side for
// every element.
using System;
using System.Collections.Generic;
public class TreeSetDemo {
public static void closestGreater(int[] arr)
{
int n = arr.Length;
SortedSet<int> ts = new SortedSet<int>();
List<int> ceilings = new List<int>(n);
// Find smallest greater or equal element
// for every array element
for (int i = n - 1; i >= 0; i--) {
int greater = lower_bound(ts, arr[i]);
if (greater == -1)
ceilings.Add(-1);
else
ceilings.Add(greater);
ts.Add(arr[i]);
}
ceilings.Sort((a,b)=>a-b);
for (int i = n - 1; i >= 0; i--)
Console.Write(ceilings[i] + " ");
}
public static int lower_bound(SortedSet<int> s, int val)
{
List<int> temp = new List<int>();
temp.AddRange(s);
temp.Sort();
temp.Reverse();
if (temp.IndexOf(val) + 1 == temp.Count)
return -1;
else if(temp[temp.IndexOf(val) +1]>val)
return -1;
else
return temp[temp.IndexOf(val) +1];
}
public static void Main(String[] args)
{
int[] arr = { 50, 20, 200, 100, 30 };
closestGreater(arr);
}
}
// This code is contributed by Rajput-Ji
JavaScript
// JavaScript code for the above approach
function closestGreater(arr, n) {
let s = [];
let ceilings = [];
// Find smallest greater or equal element
// for every array element
for (let i = n - 1; i >= 0; i--) {
let greater = bisect_left(s, arr[i]);
if (greater == s.length) {
ceilings.push(-1);
} else {
ceilings.push(s[greater]);
}
s.splice(greater, 0, arr[i]);
}
let temp = [];
for (let i = n - 1; i >= 0; i--) {
temp.push(ceilings[i]);
}
console.log(temp.join(" "));
}
function bisect_left(s, x) {
let lo = 0;
let hi = s.length;
while (lo < hi) {
let mid = Math.floor((lo + hi) / 2);
if (s[mid] < x) {
lo = mid + 1;
} else {
hi = mid;
}
}
return lo;
}
let arr = [50, 20, 200, 100, 30];
closestGreater(arr, 5);
// This code is contributed by Prince Kumar
Time Complexity: O(n Log n)
Auxiliary Space: O(n)
Similar Reads
Ceiling of every element in same array Given an array of integers arr[]. The task is to find the ceiling for each element in the array. The "ceiling" of an element is defined as the closest greater than or equal value present in the array (i.e., excluding the element itself). If no such element exists, return -1 for that position.Example
13 min read
Next Greater Element (NGE) for every element in given Array Given an array arr[] of integers, the task is to find the Next Greater Element for each element of the array in order of their appearance in the array. Note: The Next Greater Element for an element x is the first greater element on the right side of x in the array. Elements for which no greater elem
9 min read
Count of larger elements on right side of each element in an array Given an array arr[] consisting of N integers, the task is to count the number of greater elements on the right side of each array element. Examples: Input: arr[] = {3, 7, 1, 5, 9, 2} Output: {3, 1, 3, 1, 0, 0} Explanation: For arr[0], the elements greater than it on the right are {7, 5, 9}. For arr
15+ min read
Print greater elements present on the left side of each array element Given an array arr[] consisting of N distinct integers, the task is to print for each array element, all the greater elements present on its left. Examples: Input: arr[] = {5, 3, 9, 0, 16, 12}Output:5: 3: 59: 0: 9 5 316: 12: 16 Input: arr[] = {1, 2, 0}Output:1: 2: 0: 2 1 Naive Approach: The simplest
10 min read
Closest greater or same value on left side for every element in array Given an array arr[] of size n. For each element in the array, find the value wise closest element to its left that is greater than or equal to the current element. If no such element exists, return -1 for that position.Examples: Input : arr[] = [10, 5, 11, 6, 20, 12]Output : [-1, 10, -1, 10, -1, 20
9 min read