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Appendix A. The auxiliary problem

A.1. Notation

To facilitate the presentation we start by fixing some notation that will be of repeated

use throughout the appendix. A strategy is a pair π = (P π, Rπ) of adapted, non decreasing,

left continuous and right limited processes with initial value zero such that

Rπ
t =

∞∑
n=1

1{t>ξn}rn (65)

for some increasing sequence of stopping times (ξn)∞n=1 and some sequence of nonnegative

random variables (rn)∞n=1 such that rn is measurable with respect to Fξn . The liquid reserves

process and liquidation time associated with the use of a given payout and financing strategy

are defined by

Sπt = s+ Ct − P π
t +Rπ

t = s+ µ̄t+ σBt −
Nt∑
n=1

Yn − P π
t +Rπ

t (66)

and

τπ = inf

{
t ≥ 0 : Sπt+ = lim

u↓t+
Sπu ≤ 0

}
. (67)

with the strictly positive constant µ̄ = (1 − θ)(µ − c). The set Π(s) of strategies that are

admissible starting from s ∈ R is defined as the set of strategies such that

∆+P π
t ≤ Sπt + ∆+Rπ

t (68)

and

Es
[∫ τπ

0

e−ρt(dP π
t + dΦt(R

π))

]
<∞. (69)
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where the nondecreasing process

Φt(R
π) = Rπ

t +
∞∑
n=1

1{t>ξn}φ (70)

represents the total contribution of shareholders to the bank, and

∆+Zt = Zt+ − Zt = lim
u↓t

Zu − Zt (71)

denotes the jump that occurs immediately after time t ≥ 0. The inequality constraint im-

posed by Eq.(68) prevents shareholders from distributing dividends that exceed the available

liquid reserves and is necessary to guarantee that the optimization problems in Eqs.(10) and

(24) are well-defined. Otherwise the bank would be able to generate infinite value by simply

paying out amounts that it does not hold.

A.2. Immediate liquidation

Lemma A.1. Denote by v∗0 > 0 the unique solution to

z(v) = −(ρ+ λ)v + µ̄+ λE
[
(v − Y1)+

]
= 0 (72)

If the liquidation value is such that α ≥ v∗0 then it is optimal for shareholders to shut down

the bank immediately.

Proof. The function z(v) is continuous, non increasing, starts out from µ̄ > 0 at the origin

and satisfies

lim
v→∞

z(v) = −∞. (73)

Therefore it crosses the horizontal axis at a unique point v∗0 > 0. Given the result of Lemma

A.8 below it now suffices to show that the equity value function u0(s) = (α+ s)+ associated

with the strategy of immediate liquidation satisfies

Hu(s) = max{1− u′(s),Du(s)} ≤ 0, s > 0, (74)
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with the integro-differential operator defined by

Du(s) = −ρu(s) + µ̄u′(s) +
1

2
σ2u′′(s) + λE [u(s− Y1)− u(s)] . (75)

Substituting the function u0(s) into the right hand side of Eq.(74) gives

Hu0(s) = max (0, z(α + s)) , s > 0. (76)

Since the term inside the bracket is decreasing we have that Hu0(s) ≤ 0 for all s > 0 if and

only if Hu0(0) = 0. This is equivalent to z(α) ≤ 0 and the required result follows from the

definition of the constant v∗0. �

A.3. Value of a barrier strategy

In order to compute the equity value of the auxiliary bank under a given barrier strategy

let us first start by fixing some notation. Let

B1 < −β < B2 < 0 < B3 (77)

denote the three real roots of the cubic equation

ρ = Bi

(
µ̄+Bi

σ2

2
− λ

β +Bi

)
, (78)

set

A(α) = λE
[
(α− Y1)+

]
= λ

(
α− F (α)

β

)
∈ [0, αλ] (79)

and define

W (x) =
3∑
i=1

1{x≥0}
2(β +Bi)

σ2
∏

k 6=i(Bi −Bk)
eBix. (80)

The function W (x) is referred to as the ρ−scale function of the uncontrolled liquid reserves

process (see Kuznetsov, Kyprianou and Rivero (2013) for a comprehensive survey of the

theory of scale functions) and the following result shows that, as stated in Eqs.(27) and (28)
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of the main text, this function can be used as a building block to derive explicit expressions

for the functions appearing on the right hand side of equation Eq.(27).

Lemma A.2. We have

w(s; 0; b) = Es
[∫ τπb

0

e−ρtdP b
t

]
= (s− b)+ +

W (s ∧ b)
W ′(b)

(81)

and

ψ(s;α) =
2∑
i=1

ai(α)eBis, s ≥ 0, (82)

with the coefficients defined by

ai(α) = (−1)i
[

2A(α) + α(β +Bi)(β +B3)σ2

(B2 −B1)(β +B3)σ2

]
> 0 i = 1, 2. (83)

The function ψ(s;α) is completely monotone with respect to s ≥ 0 and therefore decreasing

and convex.

Proof. The first part follows directly from Avram, Palmowski and Pistorius (2007, Propo-

sition 1). To establish the second part we start by decomposing the function into two

components according to whether the uncontrolled process enters the negative real line

continuously (first term), or through a jump (second term):

ψ(x;α) = αEx
[
e−ρζ01{∆Xζ0=0}

]
+ Ex

[
e−ρζ0(α +Xζ0)+1{∆Xζ0 6=0}

]
. (84)

Combining Corollary 2 and Equation (6) of Bertoin (1997) shows that the first term can be

computed in terms of the scale function as

αEx
[
e−ρζ01{∆Xζ0=0}

]
=
ασ2

2
(W ′(x)−B3W (x)) . (85)

On the other hand, Bertoin (1997, Corollary 2) shows that the potential measure of the

uncontrolled liquid reserves process killed at ζ0 is given by

U(x, dy) = Ex
[∫ ∞

0

e−ρt1{ζ0>t}∩{Xt∈dy}dt

]
=
(
e−B3yW (x)−W (x− y)

)
dy (86)
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and it thus follows from the compensation formula for point processes that second term can

be calculated as

Ex
[
e−ρζ0(α +Xζ0)+1{∆Xζ0 6=0}

]
=

∫ ∞
0

λU(x, dy)

∫ ∞
y

(α + y − u)+dF (u). (87)

Substituting Eqs.(85) and (87) into Eq.(84), calculating the integral, and simplifying the

result gives the formula reported in the statement. The nonnegativity of A(α) and Eq.(77)

imply that a2(α) > 0. On the other hand, using Eq.(77) and

3∏
i=1

(β +Bi) +
2λβ

σ2
= 0 < A(α)− λα (88)

we deduce that

a1(α) =
2

(B1 −B2)(β +B3)

(
A(α)− λβα

β +B2

)
> 0 (89)

and the required complete monotonicity of the function ψ(s;α) now follows from the fact

that the constants B1 and B2 are negative. �

A.4. The optimal barrier

In the earnings retention region the value of a barrier strategy depends on the barrier

level only through the function

H(b;α) =
1− ψ′(b;α)

W ′(b)
. (90)

Therefore, since the scale function is strictly positive by Lemma A.6 below, we have that

the existence and uniqueness of an optimal barrier amount to the existence and uniqueness

of a global maximizer for this function.

Lemma A.3. For any fixed α ∈ [0, v∗0) the function H(b;α) achieves its supremum over the

positive half line at a unique point b∗(α).

Proof. Since the case α = 0 follows directly from the result of Lemma A.6 we will assume

that α ∈ (0, v∗0). Using the definition of the functions z(α) and A(α) in conjunction with the
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fact that the roots of Eq.(78) satisfy

β +
3∑
i=1

Bi +
2µ̄

σ2
=

3∏
i=1

Bi −
2βρ

σ2
= 0, (91)

we deduce that

H ′(0;α) = µ̄+ A(α)− α(ρ+ λ) = z(α) > 0, (92)

where the inequality follows from the fact that α < v∗0 if and only if z(α) > 0 as established

in the proof of Lemma A.1. To study the behavior of the derivative away from the origin

consider the function

G(b;α) = −ψ
′′(b;α)

W ′′(b)
. (93)

A direct calculation using the definition of the function H(b;α) shows that

H ′(b;α) = (G(b;α)−H(b;α))
W ′′(b)

W ′(b)
(94)

and it thus follows from Lemma A.6 that we have

H ′(b;α) ≥ 0 ⇐⇒ (x∗ − b)(H(b, α)−G(b, α)) ≥ 0 (95)

for any b 6= x∗ where the constant x∗ > 0 is the unique solution to W ′′(x∗) = 0 provided by

Lemma A.6 below. Now consider the threshold defined by

b∗ = b∗(α) ≡ inf{b ≥ 0 : H(b;α) ≤ G(b;α)}. (96)

Since G(x∗, α) = ∞ by construction and H(0;α) > G(0;α) due to Eqs.(92) and (95), we

have that this threshold lies in (0, x∗) and satisfies

H ′(b∗;α) = H(b∗;α)−G(b∗;α) = 0 ≤ H ′(b;α), 0 ≤ b ≤ b∗. (97)
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Therefore, the proof will be complete once we show that function H(b;α) is decreasing on

the interval [b∗,∞). Combining Lemmas A.2 and A.6 we deduce that

G(b;α) ≤ 0 ≤ H(b;α), b > x∗, (98)

and it thus follows from Eq.(95) that H(b;α) is decreasing over (x∗,∞). On the other hand,

the fact that b∗ > 0 implies that we have G′(b∗;α) > 0 and therefore

G′(b;α) > 0, b ≥ b∗, (99)

by Lemma A.7. Combining this property with Eq.(97) shows that there exists an ε0 > 0

such that the function

Φ(b;α) = H(b;α)−G(b;α) (100)

is strictly negative on the interval N0 = (b∗, b∗+ ε0] and it now follows from Eq.(95) that we

have H ′(b;α) < 0 on N0. Repeating the same argument at b∗ + ε0 then allows to propagate

this property to the whole interval (b∗, x∗] and completes the proof. �

Intuitively we expect that the incentives of the bank to retain earnings decrease as the

liquidation value of assets increases. The next result confirms this intuition by showing that

the optimal barrier is decreasing in the liquidation value of assets.

Lemma A.4. The function b∗(α) is strictly decreasing on the interval [0, v∗0] with b∗(0) = x∗

and b∗(v∗0) = 0.

Proof. As shown in the proof of Lemma A.3 we have that for any α ∈ [0, v∗) the optimal

barrier satisfies

H(b∗(α);α)−G(b∗(α);α) = 0. (101)

Therefore it follows from the implicit function theorem that the function b∗(α) is once

continuously differentiable with

db∗(α)

dα
= −Gα(b∗(α);α)−Hα(b∗(α);α)

Gb(b∗(α);α)−Hb(b∗(α);α)
=
Hα(b∗(α);α)−Gα(b∗(α);α)

Gb(b∗(α);α)
(102)
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where the second equality follows from Eq.(97). By Eq.(99) we have that the denominator

is strictly positive and so it only remains to show that the numerator is negative on [0, v∗0).

To this end it suffices to show that the function

K(b;α) =
1

4
σ4W ′(b)W ′′(b)(Hα(b;α)−Gα(b;α)) (103)

is strictly positive. A direct calculation shows that this function can be decomposed into a

sum of exponentials as

K(b;α) = c12(α)e(B1+B2)b + c13(α)e(B1+B3)b + c23(α)e(B2+B3)b (104)

with the coefficients

cij(α) = −BiBj((β +Bi)(β +Bj)σ
2 + 2A′(α))

2(Bi −B−ij)(Bi −B−ij)
, i 6= j ∈ {1, 2, 3}. (105)

The increase of the function A(α) and Eq.(77) imply that c23(α) is strictly positive. On the

other hand, using Eq.(77) in conjunction with

3∏
i=1

(β +Bi) +
2λβ

σ2
= 0 < A′(α)− λ (106)

we deduce that

c13(α) =
−2B1B3

(B1 −B2)(B3 −B2)

(
A′(α)− λβ

(β +B2)

)
> 0. (107)

If the remaining coefficient is nonnegative then K(b;α) > 0 for all b ≥ 0 and the proof is

complete. If instead the remaining coefficient is strictly negative then it follows from Eq.(77)

and Lemma A.5 that there exist γ > 0 such that K(b;α) > 0 if and only if b > γ. Since

K(0;α) = c12(0) + c13(0) + c23(0) = ρ+ λ− A′(α) > 0. (108)

by Eq.(106) we have that γ < 0 and required result follows. The limit value at zero follows

from the definition of the constant x∗. On the other hand, Eqs.(92), (94) and the definition
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of the constant v∗0 imply that

lim
α→v∗0

H ′(0;α) = lim
α→v∗0

(H(0;α)−G(0;α)) = 0 (109)

and the result now follows from the fact that, as shown in the proof of Lemma A.3, the

function H(b;α) is decreasing in b after the point where it crosses G(b;α). �

Lemma A.5. Let a1 < 0 < a3 and b1 < b2 < b3 be constants. Then there exists a unique

constant γ∗ such that the function

f(x) =
3∑
i=1

aie
bix (110)

is positive if and only if x ≥ γ∗.

Proof. Under the conditions of the statement we have that

k(x) = e−b1xf(x) = a1 + a2e
(b2−b1)x + a3e

(b3−b1)x (111)

tends to a1 < 0 as x → −∞ and to ∞ as x → ∞. If a2 is nonnegative, then this function

is nondecreasing and therefore crosses the origin only once. On the other hand, if a2 is

negative then k(x) is ∪-shaped and therefore attains a minimum at the unique point where

its derivative equals zero. In either case, the equation k(x) = 0 admits a unique solution at

which k′(x) > 0 and the desired result follows. �

Lemma A.6. The scale function is strictly increasing on [0,∞) and there exists a constant

x∗ > 0 such that W ′′(x) ≤ 0 if and only if x ≤ x∗.

Proof. Differentiating Eq.(81) and using Eq.(77) shows that for any x ≥ 0 the derivative

of the scale function is given by

W ′(x) =
3∑
i=1

cie
Bix (112)

with the coefficients

ci =
2(β +Bi)Bi

σ2
∏

k 6=i(Bi −Bk)
> 0, i = 1, 2, 3. (113)
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This shows that the scale function is strictly increasing over the positive real line and hence

positive since W (0) = 0. The second part follows from an application of Lemma A.5 and

the fact that

W ′′(0) =
2

σ2
(B1 +B2 +B3 + β) = −4µ̄

σ4
(114)

is strictly negative. �

Lemma A.7. There exists an x0 ∈ [0, x∗) such that G(x;α) is decreasing on [0, x0] and

increasing on (x0, x
∗).

Proof. Consider the function defined by

K(x;α) =
1

2
(σW ′′(x))2G′(x;α) (115)

A direct calculation using Eq.(82) and the definition of the scale function shows that this

function is explicitly given by

K(x;α) = a13(α)e(B1+B3)x + a23(α)e(B2+B3)x + a12(α)e(B1+B2)x (116)

with the coefficients

a13(α) =
B2

1B
2
3(β +B3)

B3 −B2

a1(α) (117)

a23(α) =
B2

2B
2
3(β +B3)

B3 −B1

a2(α) (118)

and

a12(α) =
B2

1B
2
2(2A(α) + ασ2(β +B1)(β +B2))

(B3 −B1)(B3 −B2)σ2
. (119)

As shown in the proof of Lemma A.2, we have that a1(α), a2(α) > 0 and combining this with

Eq.(77) shows that a13(α), a23(α) > 0.

To complete the proof we distinguish two cases depending on the sign of the last coeffi-

cient. If we have that a12(α) ≥ 0 then K(x;α) ≥ 0 and the required result holds with the

constant x0 = 0. On the contrary, if we have that a12(α) < 0 then it follows from Eqs.(77),
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(115) and Lemma A.5 that there exists an k such that

x ≤ k ⇐⇒ G′(x;α) ≥ 0. (120)

In this case we let x0 = k+ and it now only remains to show that x0 < x∗. Since

lim
x↑x∗

G(x;α) = lim
x↑x∗
−ψ

′′(x;α)

W ′′(x)
=∞ (121)

by definition of x∗, we have that G′(x;α) > 0 in a left neighborhood of x∗ and the desired

result now follows from the definition of the constant k. �

A.5. Verification

By construction we have that the barrier strategy at b∗(α) is optimal in the restricted

class of barrier strategies. To show that this strategy is in fact optimal among all admissible

strategies we will rely on the following verification result.

Lemma A.8. Assume that u : R → R is a continuous function that is twice continuously

differentiable on (0,∞) and such that

u(s)− (α + s)+ = 0, s ≤ 0, (122)

max{1− u′(s),Du(s)} ≤ 0, s > 0. (123)

where the operator D is defined in Eq.(75). Then u(s) ≥ w(s;α) for all s ∈ R.

Proof. Let the function u(s) be as in the statement, fix a strategy π ∈ Π0(s) and consider

the nonnegative process defined by

Yt = e−ρt∧τπu(St∧τπ) +

∫ t∧τπ

0

e−ρsdP π
s . (124)
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Applying Itô’s formula for semimartingales (see for example Dellacherie and Meyer (1980,

Theorem VIII.25)) shows that there is a local martingale Mt such that

Yt −Mt∧τπ = u(s) +
∑

0≤s<t∧τπ

e−ρs
(
∆+P π

s + ∆+u(Sπs )
)

(125)

+

∫ t∧τπ

0

e−ρsDu(Sπs−)ds+

∫ t∧τπ

0

e−ρs(1− u′(Ss−))dP π,c
s (126)

where P π,c
t denotes the continuous part of the cumulative payout process. Using the definition

of the liquidation time together with the fact that the function u(s) satisfies Eqs.(122) and

(123), we deduce that

1{s<τπ}
(
∆+P π

s + ∆+u(Sπs ) +Du(Sπs−)ds+ (1− u′(Ss−))dP π,c
s

)
(127)

≤ 1{s<τπ}
(
∆+P π

s + ∆+u(Sπs )
)

(128)

= 1{s<τπ}
(
u(Sπs −∆+P π

s ) + ∆+P π
s − u(Sπs )

)
≤ 0 (129)

and it follows that the process on the right hand side of Eq.(125) is decreasing. This in turn

implies that Yt is local supermartingale and hence a supermartingale since it is nonnegative.

In particular, combining Eq.(122) with the the optional sampling theorem for nonnegative

supermartingales shows that

u(s) = Y0 ≥ Es [Yτπ ] = Es
[
e−ρτπu(Sπτπ) +

∫ τπ

0

e−ρsdP π
s

]
(130)

= Es
[
e−ρτπ(α + Sπτπ)+ +

∫ τπ

0

e−ρsdP π
s

]
(131)

and the required result now follows from the arbitrariness of the strategy by taking the

supremum over π ∈ Π0(s) on both sides. �

Lemma A.9. For α < v∗0 the continuous function

u(s;α) = w(s;α, b∗(α)), s ∈ R, (132)

is concave and twice continuously differentiable on (0,∞) with u′(s;α) ≥ 1 for all s > 0.

Proof. By construction we have that u(s;α) is twice continuously differentiable on the

set (0,∞)\b∗(α) and so it suffices to establish the required smoothness at the barrier.
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Differentiating on both sides of Eq.(81) we deduce that

lim
s↑b∗(α)

u′(s;α) = lim
s↑b∗(α)

(ψ′(s;α) +W ′(s)H(b∗(α);α)) = 1 (133)

and it now follows from Eq.(27) that the function u(s;α) is continuously differentiable across

the barrier. Similarly, differentiating twice with respect to s on both sides of Eq.(81) and

using the definition of the optimal barrier gives

u′′(s;α) = W ′′(s) (G(b∗(α);α)−G(s;α)) , s < b∗(α), (134)

and the required smoothness now follows from the continuity of G(b;α). By Lemmas A.3

and A.6 we have

W ′′(b) ≤ 0 ≤ G(b;α) ≤ H(b;α) ≤ H(b∗(α);α) = G(b∗(α), α) (135)

for all b ≤ b∗(α) ≤ x∗. Therefore, it follows from Eq.(134) that u(s;α) is concave on [0, b∗(α))

and hence on the positive half line since it is linear outside of this interval. Finally, using this

concavity and the fact that u′(s;α) = 1 above the point b∗(α), we deduce that u′(s;α) ≥ 1

for all s ≥ 0 and the proof is complete. �

The next result establishes the global optimality of the barrier strategy at b∗(α) for the

auxiliary problem Eq.(24) and concludes the proof of Proposition 2.

Lemma A.10. Let b∗(α) denote the unique solution to H ′(b;α) = 0 for α < v∗0 and b∗(α) = 0

otherwise. Then we have have w(s;α) = u(s;α) and the optimal dividend strategy is a barrier

strategy at b∗(α).

Proof. When α ≥ v∗0 the result follows directly from Lemma A.1 so let us assume that

α < v∗0. Since by construction u(s;α) ≤ w(s;α), it suffices to show that u(s;α) satisfies the

conditions of Lemma A.8. By Lemma A.9 we have that this function is continuous on R,

twice continuously differentiable on (0,∞) and satisfies

u′(s;α) ≥ 1, s > 0, (136)
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as well as Eq.(122). Therefore it only remains to show that Du(s;α) ≤ 0 for all s > 0. A

direct calculation using Eq.(78) shows that we have

Dψ(s;α) = DW (s) = 0, s > 0. (137)

Combining this identity with Eqs.(27) and (132) we conclude that

Du(s;α) = Dψ(s;α) +H(b∗(α);α)DW (s) = 0, s < b∗(α). (138)

On the other hand, using Eq.(137) in conjunction with Eq.(27), the result of Lemma A.9

and the definition of D shows that for s ≥ b∗(α)

Du(s;α) = Du(s;α)−Dψ(s;α)−H(s;α)DW (s) (139)

= ρ (w(s;α, s)− u(s;α))− σ2

2
(ψ′′(s;α) +H(s;α)W ′′(s)) (140)

+ λ

∫ ∞
0

[(u(s− y;α)− w(s− y;α, s))− (u(s;α)− w(s;α, s))] dF (y). (141)

Fix an arbitrary s ≥ b∗(α) and consider the function defined by

ϕ(x;α, s) = w(x;α, s)− u(x;α) (142)

Using Eq.(27) together with Eq.(132) we deduce that

ϕ′(x;α, s) = W ′(x) (H(s;α)−H(b∗(α);α)) ≤ 0, x ∈ (0, b∗(α)) (143)

where the inequality follows from Lemmas A.6 and A.3. On the other hand, using Eq.(27)

together with Eq.(132) we deduce that

ϕ′(x;α, s) = ψ′(x;α) +W ′(x)H(s;α)− 1, b∗(α) ≤ x ≤ s (144)

= W ′(x) (H(s;α)−H(x;α)) ≤ 0 (145)

where the inequality follows from Lemma A.6 and the fact that, as established in the proof

of Lemma A.3, the function H(x;α) is decreasing over [b∗(α),∞). Combining Eqs.(143) and

14



(145) shows that we have

ϕ′(x;α, s) ≤ 0, 0 ≤ x ≤ s, (146)

and since

ϕ(x;α, s) = w(x;α, s)− u(x;α) = 0, x ≤ 0, (147)

because of Eq.(27) we conclude that the function ϕ(x;α, s) is non positive on (−∞, s]. This

implies that the first and last term in Eq.(140) are non positive. Finally, it follows from the

definition of the function H(s;α) that the second term satisfies

−σ
2

2
(ψ′′(s;α) +H(s;α)W ′′(s)) =

σ2

2
W ′(s)H ′(s;α) (148)

and the desired conclusion follows from Lemma A.6 and the fact that H(x;α) is decreasing

over the interval [b∗(α),∞) as shown in the proof of Lemma A.3. �

Appendix B. Proofs

B.1. The frictionless problem

In order to prove Proposition 1 we consider the parametrized family of optimal stopping

problems defined by

p(Φ) = sup
τ∈S

E
[∫ τ

0

e−ρsdCs + e−ρτ max{Φ,−∆Cτ}
]

(149)

E
[∫ τ

0

e−ρsdCs + e−ρτ max(Φ,−∆Cτ )

]
= E

[∫ τ

0

e−ρsdCs + e−ρτ max(Φ,−∆Cτ )

]
(150)
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where S denotes the set of all stopping times and the cumulative cash flow process evolves

according to

Ct = At − (1− θ)ct = µ̄t+ σBt −
Nt∑
n=1

Yn. (151)

The following result provides a closed-form solution to this family of problems and allows to

recover the conclusion of Proposition 1 by setting Φ = `(0).

Proposition B.1. The value function and the optimal stopping time for problem Eq.(149)

are explicitly given by

p(Φ) = max{Φ, v∗0} (152)

and

τ ∗(Φ) = 1{Φ<v∗0} inf{t ≥ 0 : v∗0 + ∆Ct ≤ 0} (153)

where the strictly positive constant v∗0 is the unique solution to

ρv∗0 = µ̄− λE [min{v∗0, Y1}] . (154)

In particular, the value function of the frictionless problem is given by max{`(0), v∗0} and

the optimal strategy is to liquidate immediately if `(0) > v∗0 and otherwise wait until the first

time that the absolute value of a jump of the cash flow process exceeds v∗0.

Before proving the above proposition, we start by establishing a verification result for the

HJB equation associated with Eq.(149).

Lemma B.1. Assume that q ∈ R satisfies

max {Φ− q;−ρq + µ̄+ λE [max(0, q − Y1,Φ− Y1)− q]} = 0 (155)

Then we have q ≥ p(Φ).
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Proof. Assume that q satisfies the assumption of the statement, fix an arbitrary stopping

time ζ ∈ S and consider the process

wt = e−ρtq1{ζ>t} + e−ρζ max{Φ;−∆Cζ}1{ζ≤t} +

∫ t∧ζ

0

e−ρsdCs. (156)

Since q satisfies Eq.(155) we have that q ≥ Φ and

ρq ≥ µ̄+ λE [max{0, q − Y1,Φ− Y1} − q] = µ̄− λE [min{v∗0, Y1}] . (157)

Combining these properties with an application of Itô’s lemma shows that

dwt = 1{ζ>t}e
−ρt (σdBt + ∆Ct + (µ̄− ρq)dt) + 1{ζ=t}e

−ρt ((Φ + ∆Ct)
+ − q

)
(158)

≤ 1{ζ>t}e
−ρt (σdBt + ∆Ct + (µ̄− ρq)dt) (159)

≤ 1{ζ>t}e
−ρt (σdBt − YNtdNt + λE [q −max{0, q − Y1,Φ− Y1}] dt) (160)

= 1{ζ>t}e
−ρt (σdBt − YNtdNt + λE [Y1] dt+ λE [min{0, q − Y1}] dt) (161)

≤ 1{ζ>t}e
−ρt (σdBt − YNtdNt + λE [Y1] dt) (162)

Integrating on both sides and using the fact that q ≥ Φ then gives

wt − q ≤
∫ t

0

1{ζ>s}e
−ρs (σdBs − YNsdNs + λE [Y1] ds) ≡ mt. (163)

By construction, we have that the process mt is a local martingale and since its quadratic

variation satisfies

E[m]ζ ≤ E
[∫ ∞

0

e−2ρs
(
σ2ds+ Y 2

NsdNs

)]
=
σ2 + λE [Y 2

1 ]

2ρ
<∞. (164)

it follows from the Burkholder-Davis-Gundy inequality that it is a true martingale on the

interval [[0, ζ]]. Combining this property with Eq.(163) then shows that

q ≥ E [wζ −mζ ] = E [wζ ] = E
[
e−ρζ max{Φ;−∆Cζ}+

∫ ζ

0

e−ρsdCs

]
(165)

and the desired result now follows from the arbitrariness of ζ ∈ S by taking the supremum

on both sides of this inequality. �
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Proof of Proposition B.1. Consider the function defined by

z(v) = µ̄+ λE
[
(v − Y1)+

]
− (ρ+ λ)v (166)

and observe that Eq.(154) is equivalent to z(v∗0) = 0. The function z(v) is continuous, non

increasing, starts out from µ̄ > 0 at the origin and satisfies

lim
v→∞

z(v) = −∞. (167)

Therefore it crosses the horizontal axis at a unique point v∗0 > 0 and it follows that

Eq.(154) admits a unique strictly positive solution. A direct calculation then shows that

q∗ = max(Φ, v∗0) satisfies Eq.(155) and it thus follows from Lemma B.1 that q∗ ≥ p(Φ). To

establish the reverse inequality denote by

q̄ = E

[
e−ρτ

∗(Φ) max{Φ;−∆Cτ∗(Φ)}+

∫ τ∗(Φ)

0

e−ρsdCs

]
(168)

the value associated with the stopping time τ ∗(Φ). By definition we have q̄ ≤ p(Φ) and

we claim that q̄ = q∗. If Φ > v∗0 then the claim immediately follows from the definition

of the stopping time. On the contrary, if Φ ≤ v∗0 then it follows from the law of iterated

expectations and the definition of the cash flow process that

c(q̄) ≡ −ρq̄ + µ̄+ λE
[
(q̄ − Y1)1{Y1≤v∗0} − q̄

]
= 0. (169)

As is easily seen the continuous function c(q) is decreasing in q and therefore crosses the

horizontal axis at most once. Since

c(v∗) = −ρv∗ + µ̄+ λE
[
(v∗0 − Y1)1{Y1≤v∗0} − v

∗
0

]
(170)

= −ρv∗0 + µ̄− λE [min{v∗0, Y1}] = 0 (171)

we have that this crossing point is uniquely given by q̄ = v∗0. �
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B.2. Value of an unregulated bank

Consider the functions defined by

g(α, k; b) = max{k, w(b, α; b)− b− φ}, (172)

and let

g(α, k) = max{k, h(α)} = max{k, w(b∗(α), α; b∗(α))− b∗(α)− φ}. (173)

The following lemmas will be used in the construction of the optimal strategy for the bank

subject to refinancing costs.

Lemma B.2. The function α 7→ g(α, k; b) admits a unique fixed point for any given b, k > 0.

Proof. The proof is similar to that of Lemma B.3 below and therefore is omitted. �

Lemma B.3. The function α 7→ g(α, k) admits a unique fixed point ak ≥ 0 for any given

k > 0 and this fixed point is such that a ≡ a0 < v∗0 and ak = max{a, k}.

Proof. Fix a barrier level b > 0 and two liquidation values 0 ≤ α2 < α1. By definition, we

have that the corresponding values satisfy

w(s;α2; b) ≤ w(s;α1; b) = Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπb (α1 + Sπbτπb

)+

]
(174)

≤ (α1 − α2)Es
[
e−ρτπb

]
+ Es

[∫ τπb

0

e−ρtdP b
t + e−ρτπb (α2 + Sπbτπb

)+

]
(175)

= (α1 − α2)Es
[
e−ρτπb

]
+ w(s;α2; b) (176)

and it follows that

∂w(s;α; b)

∂α
∈ [0, 1), (s, α, b) ∈ (0,∞)× [0, v∗0)× (0,∞). (177)

On the other hand, using Eq.(27) together with Lemma A.3 we get

∂w(s;α; b)

∂b

∣∣∣∣
s=b∗(α)

= 1− ∂w(s;α; b)

∂s

∣∣∣∣
s=b=b∗(α)

= 0 (178)
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and combining this with equation Eq.(177) we conclude that the function h(α) is non

decreasing with h′(α) < 1 for all α ∈ [0, v∗0). If we have h(0) ≤ 0 then this implies that

g(α, 0) admits a unique fixed point that is located at the origin. On the contrary, if we

have h(0) > 0 then we know from Lemmas A.3 and A.4 that the non increasing function

g(α, 0)− α is strictly positive at the origin, strictly decreasing on [0, v∗0) with

g(α, 0)− α = w(0, α; 0)− φ− α = −φ < 0, α ≥ v∗0, (179)

and it immediately follows that in this case the function g(α, 0) admits a unique fixed point

that lies in the interval (0, v∗0).

By the first part of the proof we have that for k > 0 the function g(α, k) − α is strictly

decreasing on [0,max(k + φ, v∗0)) and satisfies

g(α, k)− α = max{k − α,−φ} = −φ < 0, α ≥ max(k + φ, v∗0). (180)

This implies that the fixed point of the function g(α, k) must be unique if it exists and it

now only remains to show that max{a, k} is such a fixed point. If k > a then the result

follows by observing that since the function g(α, 0) is non increasing we have

k > a = g(a, 0) ≥ g(k, 0) = h(k) (181)

by definition of a. Similarly, if a > 0 and k ≤ a then we have k ≤ a = g(a, 0) = h(a) and

the desired fixed point property follows. �

Proof of Proposition 3. Consider the strategy π̂b that consists in distributing dividends

to maintain liquid reserves at or below b > 0 and in either liquidating or raising funds back

to b depending on which option is more profitable whenever liquid reserves become negative.

Denote by

vb(s) = Es
[∫ τπ̂b

0

e−ρt(dP π̂b
t − dΦt(R

π̂b))

]
(182)

the value of the bank under this strategy. By definition we have that

vb(b) = (max{`(0), vb(b)− b− φ}+ s)+ , s ≤ 0 (183)
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and

Rπ̂b
t = P π̂b

t − P b
t = 0, 0 ≤ t ≤ τπb (184)

where the stopping time τπb denotes the stochastic liquidation time associated with the

barrier strategy for dividends at level b. Combining these properties with Eq.(182) and the

law of iterated expectations gives

vb(s) = Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπbv(Sπbτπb

; b)

]
(185)

= Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπb

(
max{`(0), vb(b)− b− φ}+ Sπbτπb

)+
]

(186)

= Es
[∫ τπb

0

e−ρtdP b
t + e−ρτ0

(
α̂(b) + Sπbτπb

)+
]

= w(s; α̂(b); b) (187)

where α̂(b) denotes the unique fixed point of the function g(α, `(0); b) provided by Lemma

B.2. Now let α∗0 = max{a, `(0)} denotes the unique fixed point of the function g(α, `(0))

provided by Lemma B.3 and consider the barrier the barrier b∗0 = b∗(α∗0). By uniqueness

we have that α∗0 = α̂(b∗0) and combining this with Eq.(187) shows that the value of the

associated strategy satisfies

vb∗0(s) = w(s;α∗0; b∗0) = w(s;α∗0), s ∈ R. (188)

As shown in the proof of Lemma A.10, we have that

max{1− w′(s;α∗0);Dw(s;α∗0)} ≤ 0, s > 0, (189)

and the result will follow from Lemma B.4 once we show that w(s;α∗0) satisfies Eq.(193).

By Lemma A.9, we have that this function is concave and twice continuously differentiable

on the strictly positive real line with w′(s;α∗0) = 1 for s ≥ b∗0. Therefore, it follows from the

definition of α∗0 that we have

max{`(0), fw(0, α∗0)} = max{`(0), w(b∗0;α∗0)− b∗0 − φ} = α∗0 (190)
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and combining this with Eq.(24) gives

w(s;α∗0) = (α∗0 + s)+ = (max{`(0), fw(0, α∗0)}+ s)+ , s ≤ 0, (191)

which is the required boundary condition. �

Corollary B.1. Let

φ∗ = max{0, w(b∗(`(0)), `(0), b∗(`(0)))− b∗(`(0))− `(0)} (192)

Then the bank raises funds if and only if φ < φ∗.

Proof. By Proposition 3 we have that the bank raises funds if and only if α∗0 > `(0) and a

direct calculation shows that this is equivalent to φ > φ∗. �

Lemma B.4. Assume that u : R → R is a continuous function that is twice continuously

differentiable on (0,∞) and such that

u(s)− (max{`(0), fu(0)}+ s)+ = 0, s ≤ 0, (193)

max{1− u′(s),Du(s)} ≤ 0, s > 0. (194)

Then we have u(s) ≥ v(s) for all s ∈ R.

Proof. Assume that the function u(s) satisfies the conditions of the statement, fix an

admissible strategy π ∈ Π(s) and consider the process

Yt = e−ρt∧τπu(Sπt∧τπ) +

∫ t∧τπ

0

e−ρs(dP π
s − dΦs(R

π)). (195)

Applying Itô’s formula for semimartingales (see for example Dellacherie and Meyer (1980,

Theorem VIII.25)) shows that

Yt −Mt∧τπ = u(Sπ0 ) +
∑

0≤s<t∧τπ

e−ρs
(
∆+u(Sπs ) + ∆+(P π

s − Φs(R
π))
)

(196)

+

∫ t∧τπ

0

e−ρsDu(Sπs−)ds+

∫ t∧τπ

0

e−ρs(1− u′(Ss−))dP π,c
s (197)
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for some local martingale Mt. Using the fact that u(s) satisfies Eqs.(193) and (194), together

with the definition of the liquidation time, we deduce that

1{s<τπ}
(
∆+u(Sπs ) + ∆+(P π

s − Φs(R
π)) +Du(Sπs−)ds+ (1− u′(Ss−))dP π,c

s

)
(198)

≤ 1{s<τπ}
(
∆+u(Sπs ) + ∆+(P π

s − Φs(R
π))
)

(199)

= 1{s<τπ}
(
u(Sπs −∆+(P π

s −Rπ
s )) + ∆+(P π

s − Φs(R
π))− u(Sπs )

)
(200)

≤ 1{s<τπ}
(
u(Sπs + ∆+Rπ

s )−∆+Φs(R
π)− u(Sπs )

)
(201)

= 1{s<τπ}∩{∆+Rπs>0}
(
u(Sπs + ∆+Rπ

s )−∆+Rπ
s − φ− u(Sπs )

)
. (202)

On the other hand, Eqs.(193) and (194) jointly imply that

u(s) = 1{s≤0}u(s) + 1{s>0}

(
u(0) +

∫ s

0

u′(x)dx

)
(203)

≥ 1{s≤0}u(s) + 1{s>0} (u(0) + s) (204)

= (max{`(0), fu(0)}+ s)+ ≥ (fu(0) + s)+ (205)

and combining this inequality with Eq.(202) shows that that the process on the right hand

side of equation Eq.(196) is decreasing. This in turn implies that the process Yt is a local

supermartingale and it follows that there exists a non decreasing sequence of stopping times

(θn)∞n=1 such that limn θn =∞ and

u(s) ≥ Es [Yθn ] = Es
[∫ θn∧τπ

0

e−ρt(dP π
t − dΦt(R

π)) + e−ρθn∧τπu(Sπθn∧τπ)

]
(206)

≥ Es
[∫ θn∧τπ

0

e−ρt(dP π
t − dΦt(R

π))

]
(207)

where the last inequality follows from the fact that the function u(s) is nonnegative as a

result of Eqs.(193) and (194). Letting n → ∞ and using Eq.(69) in conjunction with the

dominated convergence theorem then gives

u(s) ≥ Es
[∫ τπ

0

e−ρt(dP π
t − dΦt(R

π))

]
(208)

and the desired conclusion now follows from the arbitrariness of the strategy by taking the

supremum over π ∈ Π(s) on both sides. �
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Corollary B.2. The target level of liquid reserves b∗0 increases with refinancing costs and

decreases with the liquidation value of assets. The value α∗0 os equity in a bank without liquid

reserves decreases with refinancing costs φ and increases with the liquidation value of assets.

Proof of Corollary B.2. By Lemma A.4 we have that the target level b∗(α) is decreas-

ing in α and, since

α∗0 = max{a, `(0)} = max{a, (Λ− L−D)+} (209)

it suffices to establish that the fixed point of the function

g(α; 0;φ) = max{0;h(α;φ)} = max {0;w(b∗(α);α; b∗(α))− b∗(α)− φ} (210)

is non increasing in φ. Assume that this is not the case and fix an ε > 0. By definition we

have that the function h(α;φ) is decreasing in φ and we know from the proof of Lemma B.3

that it is also decreasing in α. Combining these properties with the assumed increase of the

fixed point gives

a(φ+ ε) = max {h(a(φ+ ε);φ+ ε} (211)

≤ max {h(a(φ+ ε);φ} ≤ max {h(a(φ);φ} = a(φ) (212)

and provides the required contradiction. �

B.3. Value of a bank subject to a liquidity requirement

Let us now turn to the case of a bank that is subject to a minimal cash holding

requirement at some level T ≥ 0. The equity value of such a bank is given by

v(s;T ) = sup
π∈Π(s,T )

Es
[∫ τπ,T

0

e−ρt(dP π
t − dΦt(R

π)) + e−ρτπ,T `
(
Sπτπ,T

)]
(213)

where the stopping time

τπ,T = inf{t ≥ 0 : Sπt+ ≤ T} (214)
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denotes the liquidation time associated with the use of a strategy π in the presence of a

cash holding requirement at level T , and Π(s, T ) denotes the set of payout and financing

strategies such that Eq.(69) holds and

∆+P π
t ≤ Sπt − T + ∆+Rπ

t , t ≥ 0. (215)

As a first step towards the proof of Proposition 4 the following lemma establishes a verifica-

tion result for this optimization problem.

Lemma B.5. Assume that u : R → R is a continuous function that is twice continuously

differentiable on (T,∞) and such that

u(s)− sup
b≥T

(`(s) ∨ (u(b)− b+ s− φ)) = 0, s ≤ T, (216)

max{1− u′(s),Du(s)} ≤ 0, s > T. (217)

Then u(s) ≥ v(s;T ) for all s ∈ R.

Proof. The proof is similar to that of Lemma B.4 and therefore is omitted. �

Proposition B.2. Assume that `(T ) ≤ a. Then the equity value of a regulated bank is

v(s;T ) = v(s− T ; 0), s ∈ R, (218)

and the optimal strategy consists in paying dividends to maintain reserves below T + b∗0,

raising funds to move to T + b∗0 whenever liquid reserves fall below T with a shortfall less

than a, and liquidating otherwise.

Proof. Assume that `(T ) ≤ a = α∗0 where the equality follows from the fact that the

function `(s) is non decreasing and denote by

u(s) = v(s− T ; 0) = w(s− T ; a) (219)

the candidate value function. From the proof of Lemma A.9, we know that this function

satisfies Eq.(217). On the other hand, the assumption of the statement and the fact that
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the unconstrained value function v(s; 0) satisfies Eq.(193) imply that for all s ≤ T we have

u(s) = v(s− T ; 0) = (a+ s− T )+ ≥ (`(T ) + s− T )+ = `(s), (220)

as well as

u(s) = v(s− T ; 0) = (max{`(0), fv(0; 0)}+ s− T )+ = (fv(0; 0) + s− T )+ (221)

=
(
supb≥0 (v(b; 0)− b+ s− T − φ)

)+
(222)

=
(
supb≥0 (u(b+ T )− b+ s− T − φ)

)+
(223)

=
(
supq≥T (u(q)− q + s− φ)

)+
(224)

Combining these two relations shows that the candidate value function satisfies Eq.(216) and

it now follows from Lemma B.5 that we have u(s) ≥ v(s, T ) for all s ∈ R.

To establish the reverse inequality consider the strategy that pays dividends to maintain

liquid reserves at or below T +b, raises outside funds to move to T +b whenever they become

smaller than T with a shortfall less than α, and liquidating otherwise. Let

Yt(s, T, α, b) = [St, Pt, Rt] (s, T, α, b) ∈ R3 (225)

with

St(s, T, α, b) = s+ Ct − Pt(s, T, α, b) +Rt(s, T, α, b) (226)

and

R0(s, T, α, b) = P0(s, T, α, b) = 0 (227)

denote the liquid reserves, cumulative dividend and cumulative financing processes associated

with this strategy under the assumption that the bank starts out holding s ∈ R in cash

reserves. In addition, let

τ(s, T, α, b) = inf{t ≥ 0 : St+(s, T, α, b) ≤ T} = inf{t ≥ 0 : St(s, T, α, b) ≤ T − α}
(228)
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give the corresponding liquidation time, and denote by

ϑt(s, T, α, b) = sup{0 ≤ u ≤ t : T − α < Su(s, T, α, b) ≤ T} (sup ∅ = 0) (229)

the last time before t ≥ 0 that the bank raises funds. With this notation, the cumulative

financing and dividend processes associated with the strategy satisfy

Rt(s, T, α, b) =
∑

0≤u<t

1{T−a<Su(s,T,α,b)≤T} (T + b− Su(s, T, α, b)) (230)

Pt(s, T, α, b) = Pϑt(s,T,α,b)(s, T, α, b) (231)

+ max
ϑt(s,T,α,b)≤u<t

(
Sϑt(s,T,α,b)+(s, T, α, b) + Cu − Cϑt(s,T,α,b) − (T + b)

)+

(232)

for all t > 0, and a straightforward calculation using the dynamics of the liquid reserves

process then shows that we have the almost sure identities

Yt(s, T, α, b) = (T, 0, 0) + Yt(s− T, 0, α, b) (233)

and

τ(s, T, α, b) = τ(s− T, 0, α, b). (234)

between the state variables, controls and liquidation times with and without a liquidity

requirement. As a result, the equity value function

v(s, T, α, b) = E

[∫ τ(s,T,α,b)

0

e−ρu
(
dPu(s, T, α, b)− dΦu(R(s, T, α, b))

)
(235)

+ e−ρτ(s,T,α,b)`
(
Sτ(s,T,α,b)(s, T, α, b)

)]
(236)
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generated by the use of the strategy associated with the triple (T, α, b) ∈ R3
+ starting from

the initial cash holding s ∈ R satisfies

v(s, T, α, b) = v(s− T, 0, α, b), (s, T, α, b) ∈ R× R3
+. (237)

The candidate for the constrained optimal strategy corresponds to (T, a, b∗(a)) and, since

`(0) ≤ `(T ) ≤ a by assumption, we know from Proposition 3 that the unconstrained optimal

strategy corresponds to (0, a, b∗(a)). Therefore it follows from Eq.(237) that

v(s, T, a, b∗(a)) = v(s− T, 0, a, b∗(a)) = v(s− T ; 0) = u(s) (238)

and the proof is complete. �

Proposition B.3. Assume that `(T ) > a. Then the equity value of a regulated bank is

v(s;T ) = w(s− T ; `(T )) (239)

and the optimal strategy consists in paying dividends to maintain liquid reserves at or below

the level T + b∗(`(T )), and liquidating the first time that they fall below T .

Proof. Assume that `(T ) > a, denote by

u(s) = w(s− T ; `(T )) = w (s− T ; `(T ); b∗(`(T ))) (240)

the candidate value function and recall that b∗(α) = 0 for all α ≥ v∗0. By Lemma A.9 we

have that this function satisfies Eq.(217) as well as

u(s) = (w(0; `(T )) + s− T )+ = (`(T ) + s− T )+ = `(s), s ≤ T. (241)

On the other hand, the same lemma shows that the function w(s; `(T )) is concave on the

positive real line with w′(s, `(T )) = 1 for s ≥ b∗(`(T )). In particular,

h(`(T )) = max
b≥0

(w(b, `(T ))− b− φ) (242)

and using this property in conjunction with the definition of the candidate value function

and the fact that, since `(T ) > a, the unique fixed point of g(α, `(T )) is located at `(T ) we
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deduce that for any cash holding s ≤ T we have

max
q≥T

(u(q)− q + s− φ) = h(`(T )) + s− T ≤ g(`(T ), `(T )) + s− T (243)

= `(T ) + s− T ≤ `(s). (244)

Combining this inequality with Eq.(241) shows that Eq.(216) is satisfied and it now follows

from Lemma B.5 that u(s) ≥ v(s, T ) for all s ∈ R.

To establish the reverse inequality consider the candidate optimal strategy described in

the statement. This strategy is associated with the triple (T, 0, b∗(`(T ))) and does not involve

refinancing. Therefore, it follows from Eq.(237), and the definition of the function `(s) that

its value satisfies

v (s, T, 0, b∗(`(T ))) = v (s− T, 0, 0, b∗(`(T ))) (245)

= w (s− T, `(T ), b∗(`(T ))) = u(s) (246)

and the proof is complete. �

Denote by

G(k, a, b, h) = P [τ(k, 0, a, b) ≤ h] (247)

the probability that a bank an unregulated bank that follows a barrier strategy (0, a, b)

defaults prior to some fixed horizon h ≥ 0 given that it starts out with k ∈ R in liquid

reserves, and by

H(k, a, b, h) = P
[
Sτ(k,0,a,b)(k, 0, a, b) + h > 0

]
(248)

the probability that the liquid reserves of this bank exceeds some level −h ≤ 0 at the time of

default. Our next result establishes some monotonicity properties of these two probabilities

and will serve as a basis for the proof of Proposition 5.

Lemma B.6. The functions G(k, a, b, h) and F (k, a, b, h) defined by Eqs.(247) and (248)

are non decreasing in h and satisfy

F (k, a, b, h) ≤ F (k, 0, b, h) ≤ F (k, 0, b′, h), F ∈ {G,H} (249)
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for all (k, h, a) ∈ R× R2
+ and 0 ≤ b′ ≤ b.

Proof. The first part of the statement is immediate from the definition so let us focus on

the second part and start with the case of the function G(k, a, b, h). By definition we have

that τ(k, 0, a, b) = τ(k, 0, 0, b) on the set

{Sτ(k,0,0,b)(k, 0, 0, b) + a ≤ 0} (250)

and τ(k, 0, a, b) > τ(k, 0, 0, b) otherwise. Therefore, τ(k, 0, a, b) ≥ τ(k, 0, 0, b) and the

first inequality in Eq.(249) follows. To establish the second inequality denote by X0
t the

uncontrolled liquid reserves of the bank starting from zero and observe that

St(k, 0, 0, b) = k +X0
t − sup

0<u≤t

(
k +X0

u − b
)+
. (251)

Since the right hand side of this equality is non decreasing in b for any given k ∈ R, we have

that the map

b 7−→ τ(k, 0, 0, b) = inf {t ≥ 0 : St+(k, 0, 0, b) ≤ 0} (252)

is non decreasing for any given k ∈ R and the desired result follows. Let us now turn to the

function F (k, a, b, h), consider the first inequality and assume that h > a for otherwise the

result is trivial since we have H(k, a, b, h) = 1 for h ≤ a. Using the fact that

{τ(k, 0, a, b) = τ(k, 0, 0, b)} = {Sτ(k,0,a,b)(k, 0, 0, b) + a ≤ 0} (253)

in conjunction with the assumption that h > a gives

1−H(k, a, b, h) = P
[
{Sτ(k,0,a,b)(k, 0, a, b) + h ≤ 0}

]
(254)

≥ P
[
{Sτ(k,0,a,b)(k, 0, a, b) + h ≤ 0} ∩ {τ(k, 0, a, b) = τ(k, 0, 0, b)}

]
(255)

= P
[
{Sτ(k,0,0,b)(k, 0, a, b) + h ≤ 0} ∩ {Sτ(k,0,a,b)(k, 0, 0, b) + a ≤ 0}

]
(256)

= P
[
Sτ(k,0,0,b)(k, 0, a, b) + h ≤ 0

]
= 1−H(k, 0, b, h) (257)
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which is the first inequality in Eq.(249). Assume from now on that h ≥ 0. Using the result

of Lemma B.8 below we have that

1−H(k, 0, b, h) = P[Sτ(k,0,0,b)(k, 0, 0, b) + h ≤ 0] = 1{h=0} (258)

+ 1{h>0} λ

∫ b

0

e−β(z+h)

[
W ′

0(b− z)
W0(x)

W ′
0(b)
−W0(x− z)

]
dz

∣∣∣∣
x=k∧b

(259)

where the undiscounted scale function is defined by

W0(x) = 1{x≥0}

[
2β

σ2A1A2

+
2(β + A1)eA1x

σ2A1(A1 − A2)
+

2(β + A2)eA2x

σ2A2(A2 − A1)

]
(260)

for some constants β + A1 < 0 < β + A2. Denote by I(x, b, h) the integral on the right

hand side of Eq.(258) and observe that the desired result will follow once we show that this

function is non decreasing in both b and x ≤ b. Differentiating with respect to b and using

the fact that the scale function is nonnegative and increasing we obtain that

sign

{
∂I(x, b, h)

∂b

}
= sign

{
W ′

0(0) +

∫ b

0

e−β(z−b)
[
W ′′

0 (b− z)− W ′′
0 (b)

W ′
0(b)

W ′
0(b− z)

]
dz

}
(261)

= sign

{
2(A1 − A2)eβh+b(A1+A2)

σ2((β + A1)ebA1 − ebA2(β + A2))

}
(262)

where the second equality follows from Eq.(260) and the computation of the integral on the

first line. Since β + A1 < 0 < β + A2 the fraction is positive and the required increase in

b follows. On the other hand, differentiating with respect to x and using Eq.(260) together

with the fact that the scale function is strictly shows that

sign

{
∂I(x, b, h)

∂x

}
= sign

{∫ b

0

e−β(z+h)W
′
0(b− z)

W ′
0(b)

dz −
∫ x

0

e−β(z+h)W
′
0(x− z)

W ′
0(x)

dz

}
.

(263)

Therefore it suffices to show that the integral

I2(b, h) =

∫ b

0

e−β(z+h)W
′
0(b− z)

W ′
0(b)

dz (264)
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is increasing in b but, since

W ′
0(b)

∂I2(b, h)

∂b
= W ′

0(0) +

∫ b

0

e−β(z−b)
[
W ′′

0 (b− z)− W ′′
0 (b)

W ′
0(b)

W ′
0(b− z)

]
dz (265)

this property follows directly from the increase of the scale function, Eq.(262) and the

definition of the constants A1 and A2. �

Proof of Proposition 5. Define a non increasing function by setting a∗(T ) = 1{`(T )<a}a

and let us start by observing that as a result of Eq.(234) we have

PT+k[τ
∗
T ≤ h] = G (k, a∗(T ), b∗(a ∧ `(T )), h) (266)

PT+k [L∗T ≥ h] = 1−H (k, a∗(T ), b∗(a ∧ `(T )), `(h+ T )) (267)

where

L∗T =
(
L+D − Λ− Sτ∗T

)+
(268)

is the loss that the bank imposes on its creditors by defaulting. Now fix a liquidity re-

quirement level T ≥ 0 and let T ′ ≥ T . In order to establish the required monotonicity we

distinguish two cases.

Case 1: a∗(T ) = a∗(T ′) = a. In this case we have

b∗(a ∧ `(T )) = b∗(a ∧ `(T ′)) = b∗(a) (269)

and it thus follows from Eqs.(266), (267), the increase of the function `(·) and the first part

of Lemma B.6 that

PT+k[τ
∗
T ≤ h] = G (k, a, b∗(a ∧ `(T )), h) (270)

= G (k, a, b∗(a ∧ `(T ′)), h) = PT ′+k[τ ∗T ′ ≤ h] (271)

PT+k [L∗T ≥ h] = 1−H (k, a, b∗(a), `(h+ T )) (272)

≥ 1−H (k, a, b∗(a), `(h+ T ′)) = PT+k [l∗T ′ ≥ h] (273)

for all (k, h) ∈ R2
+ as required.
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Case 2: a∗(T ) ≥ a∗(T ′) = 0. In this case the increase of the function `(·) and Lemma A.4

jointly imply that we have

b∗(a ∧ `(T )) ≥ b∗(`(T )) ≥ b∗(`(T ′)) = b∗(a ∧ `(T ′)) (274)

and it now follows from Eqs.(266), (267) and Lemma B.6 that

PT+k[τ
∗
T ≤ h] = G (k, a∗(T ), b∗(a ∧ `(T )), h) (275)

≤ G (k, 0, b∗(a ∧ `(T )), h) ≤ G (k, 0, b∗(`(T ′)), h) = PT ′+k[τ ∗T ′ ≤ h] (276)

PT+k [L∗T ≥ h] = 1−H (k, a∗(T ), b∗(a ∧ `(T )), `(h+ T )) (277)

≥ 1−H (k, 0, b∗(a ∧ `(T )), `(h+ T )) (278)

≥ 1−H (k, 0, b∗(`(T ′)), `(h+ T )) (279)

≥ 1−H (k, 0, b∗(`(T ′)), `(h+ T ′)) = PT+k [l∗T ′ ≥ h] (280)

for all (k, h) ∈ R2
+ as required. �

B.4. Debt values

Fix some coupon rates (cL, cD) and some face values (L,D). Let W (x) = W (x|c) with

c = cL + cD stand for the ρ−scale function of the corresponding uncontrolled liquid reserves

process, and denote by

∆q(x,Θ|L,D) = E [δq (x− Y1,Θ|L,D)] , q ∈ {junior, senior} (281)

with

δjunior(x,Θ|L,D) = 1{x+a≤0}min
{

(x+ T + Λ−D)+, L
}

(282)

δsenior(x,Θ|L,D) = δjunior(x,Θ|L, 0) = 1{x+a≤0}min
{

(x+ T + Λ)+, L
}

(283)

the expected payment that creditors receive under the strategy Θ = (T, a, b) if their debt is

of type q ∈ {senior, junior} and liquidation occurs following the arrival of a jump at a point

where the liquid reserves of the bank exceed the minimal required level by x ∈ R. With this
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notation we have that the value of the creditor’s claim is

dq(s,Θ|cL, L,D) = E

[∫ τ(s,Θ)

0

e−ρtcLdt+ e−ρτ(s,Θ)δq
(
Sτ(s,Θ)(s,Θ)− T |L,D

)]
(284)

and the following lemma provides a closed-form expression for this value in terms of the scale

function of the uncontrolled liquid reserves process.

Lemma B.7. For any s ≥ T the value of the creditor’s claim under a strategy Θ can be

computed as

dq (s,Θ|cL, L,D) =
2∑
i=1

[
ϕq,i(s− T,Θ|cL, L,D) + ϕq,i(b,Θ|cL, L,D)

γ(s− T,Θ)

1− γ(b,Θ)

]
(285)

with the functions defined by

ϕq,1(x,Θ|cL, L,D) = cL

[
W (b)W (x ∧ b)

W ′(b)
−
∫ x∧b

0

W (z)dz

]
(286)

ϕq,2(x,Θ|cL, L,D) = (σ2/2)

[
W ′(x ∧ b)− W (x ∧ b)W ′′(b)

W ′(b)

]
δq(0,Θ|L,D) (287)

+

∫ b

0

λ∆q (z,Θ|L,D)

[
W (x ∧ b)W ′(b− z)

W ′(b)
−W (x ∧ b− z)

]
dz

(288)

and

γ(x,Θ) = (σ2/2)

[
W ′(x ∧ b)− W (x ∧ b)W ′′(b)

W ′(b)

]
1{a>0} (289)

+

∫ b

0

λF (a)(1− F (z))

[
W (x ∧ b)W ′(b− z)

W ′(b)
−W (x ∧ b− z)

]
dz.

(290)

Proof. Fix a strategy Θ = (T, a, b) and let Θb = (0, 0, b). The definition of Θ implies that

the debt value satisfies the value matching condition

dq(s,Θ|cL, L,D) = dq(T + b,Θ|cL, L,D), s ∈ (T − a, T ] ∪ [T + b,∞). (291)
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On the other hand, Eq.(234) and the fact that the strategy Θb does not involve refinancing

implies that we have

τ(s,Θ) = τ(s− T, 0, a, b) ≥ τ(s− T,Θb), s ∈ R. (292)

Combining theses identities with the definition of the debt value function and the law of

iterated expectations then shows that for s ≥ T we have

dq(s,Θ|cL, L,D) =
2∑
i=1

ϕq,i(s− T,Θ|cL, L,D) + γ(s− T,Θ)dq(T + b,Θ|cL, L,D),

(293)

with the functions defined by

ϕq,2(x,Θ|cL, L,D) = E
[
e−ρτ(x,Θb)δq(Sτ(x,Θb)(x,Θb),Θ|L,D)

]
, (294)

ϕq,1(x,Θ|cL, L,D) = E

[∫ τ(x,Θb)

0

e−ρtcLdt

]
= (cL/ρ)

(
1− E

[
e−ρτ(x,Θb)

])
, (295)

and

γ(x,Θ) = E
[
e−ρτ(x,Θb)1{Sτ(x,Θb)

(x,Θb)+a>0}

]
. (296)

Evaluating Eq.(293) at the point s = T + b, solving the resulting equation for the value at

the dividend barrier and substituting the solution back into Eq.(293) shows that Eq.(285)

holds and it now remains to show that Eqs.(286), (287), and (289) are also satisfied.

The required result for ϕq,1(x,Θ|cL, L,D) follows from Kuznetsov et al. (2013, Theorem

2.8.ii). To compute the other two functions we proceed as in the proof of Lemma A.2:

Applying the dividend/penalty identity (see Gerber, Lin and Yang (2006)) and using the

same notation as in Section A.3. we find that

ϕq,2(x,Θ|cL, L,D) =
2∑
i=1

[
ϕq,2,i(x ∧ b,Θ|cL, L,D)− ϕ′q,2,i(b,Θ|cL, L,D)

W (x ∧ b)
W ′(b)

]
(297)
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with the auxiliary functions defined by

ϕq,2,1(x,Θ|cL, L,D) = Ex
[
e−ρζ01{∆Xζ0=0}δq(0,Θ|L,D)

]
(298)

ϕq,2,2(x,Θ|cL, L,D) = Ex
[
e−ρζ01{∆Xζ0 6=0}δq(Xζ0 ,Θ|L,D)

]
. (299)

By Eq.(85) we know that the first of these auxiliary functions can be computed explicitly in

terms of the generalized scale function as

ϕq,2,1(x,Θ|cL, L,D) =
σ2

2
(W ′(x)−B3W (x)) δq(0,Θ|L,D) (300)

where the constant B3 is the strictly positive root of the cubic equation Eq.(78). On the

other hand, using the compensation formula for point processes in conjunction with the

potential density given in Eq.(86) we obtain that

ϕq,2,2(x,Θ|cL, L,D) =

∫ ∞
0

λ
(
e−B3zW (x)−W (x− z)

)
∆q(z,Θ|L,D)dz. (301)

Differentiating Eqs.(300) and (301), substituting into Eq.(298), and simplifying shows that

Eq.(287) is satisfied. A similar argument shows that the function γ(x,Θ) can be computed

as indicated in Eq.(289) and completes the proof. �

Remark B.1. The integrals in the definition of the functions γ(x,Θ) and ϕq,i(x,Θ|cL, L,D)

are left unevaluated to simplify the presentation but can easily be expressed as combinations

of exponentials by using the explicit expression of the scale function in Eq.(80) and the fact

the jumps of the cash flow process are exponentially distributed.

Remark B.2. The formula of Lemma B.7 can also be used to compute the market value of

deposits. Indeed, if depositors are senior then the liquidation payment that they receive if

the bank defaults at a point where liquid reserves are equal to x ≤ T − a is

δsenior(x− T,Θ|D, 0) = min
{

(x+ Λ)+, D
}

(302)

and it thus follows from the proof of Lemma B.7 that the market value of their claim can be

computed as dsenior(s,Θ|cD, D, 0). Similarly, if depositors are junior to creditors in default

then the market value of their claim can be computed as djunior(s,Θ|cD, D, L). In either
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case the market value of the combined claim of the bank’s depositors and creditors can be

computed as dsenior(s,Θ|c,D + L, 0).

B.5. Default probability and the distribution of default losses

To quantify the effect of liquidity requirements on the default risk of the bank we need

to calculate the probability

f(s, y, t,Θ) = P[{τ(s,Θ) ≤ t} ∩ {Sτ(s,Θ)(s,Θ) ≤ T − y}] (303)

that the bank is liquidated prior to a fixed horizon in a state where the shortfall of its liquid

reserves relative to the required level exceeds a given amount y ≥ 0. Unfortunately, this

probability cannot be computed in closed form due to the time dependence induced by the

presence of a fixed horizon. To circumvent this difficulty we consider instead the Laplace

transform

f̂(s, y, k,Θ) =

∫ ∞
0

e−ktf(s, y, t,Θ)dt = (1/k)E
[
e−kτ(s,Θ)1{Sτ(s,Θ)(s,Θ)≤T−y}

]
. (304)

Relying on arguments similar to those we used in the computation of the debt value function

allows to obtain this Laplace transform in closed form. To state the result let

Wk(x) =
3∑
i=1

1{x≥0}
2(β +Bi,k)e

Bi,kx

σ2
∏

j 6=i(Bi,k −Bj,k)
(305)

where the constants (Bi,k)
3
i=1 denote the real roots of the cubic equation

k = Bi,k

(
µ̄+Bi,k

σ2

2
− λ

β +Bi,k

)
, (306)

denote the scale function of the uncontrolled liquid reserves process associated with the

discount rate k ≥ 0.

Lemma B.8. For any s ≥ T the Laplace transform of the bank’s default probability can be

computed as

f̂(s, y, k,Θ) = (1/k)

[
κ(s− T, y, k,Θ) + κ(b, y, k,Θ)

γk(s− T,Θ)

1− γk(b,Θ)

]
(307)
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where we have set

κ(x, y, k,Θ) = (σ2/2)

[
W ′
k(x ∧ b)−

Wk(x ∧ b)W ′′
k (b)

W ′
k(b)

]
1{y=a=0} (308)

+

∫ b

0

λ(1− F (z + a ∨ y))

[
Wk(x ∧ b)W ′

k(b− z)

W ′
k(b)

−Wk(x ∧ b− z)

]
dz

(309)

and the function γk(x,Θ) is defined as in Eq.(289) but with Wk(x) instead of W (x).

Proof. The computation follows the same steps as that of the debt value function in the

proof Lemma B.7 and therefore is omitted. �

To obtain the default probability we will numerically invert the Laplace transform using the

Gaver-Stehfest formula (Gaver (1966), Stehfest (1970)):

f(s, y, t,Θ) ≈
N∑
n=1

ωn(t, N)f̂

(
s, y,

1

t
log 2n,Θ

)
(310)

where N ∈ 2N is an even constant chosen to insure the convergence of the approximation,

and the weights are defined by

ωn(t, N) =

n∧N
2∑

m=[[n+1
2 ]]

(−1)n+N
2 mN/2(2m)!(log 2)(1/t)

m!(m− 1)!(n−m)!(2m− n)!(N/2−m)!
. (311)

where [[x]] denotes the integer part of a real number x. The main advantage of this method

is that it does not require the evaluation of the Laplace transform in the complex plane and,

therefore, allows to avoid solving Eq.(306) at complex values of the transform parameter. Its

main disadvantage is that requires a high accuracy to deal with the fact that the weights and

the approximations include factorials and alternating signs. This however is not a problem

in modern computer softwares such as Mathematicar. For example, in our numerical

implementation we achieve a precision of 6 digits by using N = 10 and an accuracy of

100 digits in the computations.

Remark B.3. While the joint distribution of the default time and loss in default in Eq.(303)

cannot be computed in closed form, the marginal distribution of the loss in default can be
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explicitly computed as

P[{Sτ(s,Θ)(s,Θ) ≤ T − y}] = lim
k→0

kf̂(s, y, k,Θ) (312)

= κ0(s− T, y,Θ) + κ0(b, y,Θ)
γ0(s− T,Θ)

1− γ0(b,Θ)
(313)

where the functions κ0(s, y,Θ) and γ0(s,Θ) are defined as in the statement of Lemma B.8

but with the undiscounted scale function W0(x) = limk→0Wk(x) instead of the discounted

scale function Wk(x).

B.6. Optimal capital structure

The following proposition provides condition under which the statically optimal capital

structure of section 4.2. is dynamically optimal.

Proposition B.4. If deposits and market debt can be repurchased at face value and if liability

adjustments are subject to the same fixed cost as equity issuance then it is never optimal for

the bank to modify its liabilities once it has issued the amount of deposits and market debt

prescribed by the solution to Eq.(53)–Eq.(57).

Proof of Proposition B.4. Assume that the pair (c∗L, D
∗) solves the static optimization

problem Eq.(53)–Eq.(57) and denote by

F (cL, D) = D + L(cL, D) (314)

with

L(cL, D) ≡ L = Eb∗
T (cL,D)

(cL,D)

[∫ τ∗
T (cL,D)

(cL,D)

0

e−ρtcLdt

]
(315)

+ Eb∗
T (cL,D)

(cL,D)

[
e
−ρτ∗

T (cL,D)
(cL,D)

min

{
L,
(
Sτ∗

T (cL,D)
(cL,D) + Λ− qD

)+
}]

(316)

the combined face value of the bank’s deposits and market debt associated with an arbitrary

pair (cL, D). Verification arguments similar to those of Appendix B.2. imply that in order
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to establish the desired result it is sufficient to show that

v(s;T (c∗L, D
∗)|c∗L, D∗) ≥ sup

(e,cL,D)∈R+×A(Ω)

{
−e− 1{e>0}∪{D∗ 6=D}∪{cL 6=c∗L}φ

+ v (s+ e+ F (cL, D)− F (c∗L, D
∗);T (cL, D)| cL, D)

}
= G(s) (317)

for all s ∈ R where A(Ω) is the set of pairs (cL, D) ∈ R2
+ that satisfy Eq.(57). The right

hand side of this inequality can be written as

G(s) = max {v (s;T (c∗L, D
∗)| c∗L, D∗) , H(s)} (318)

with the function

H(s) = sup
(e,cL,D)∈R+×A(Ω)

{
v (s+ e+ F (cL, D)− F (c∗L, D

∗);T (cL, D)| cL, D)− e− φ
}
.

(319)

From the properties of the equity value function derived in Appendices B.2. and B.3., we

know that the target level of liquid reserves satisfies

sup
e≥0
{v (s+ e;T (cL, D)| cL, D)− e} = s− b∗T (cL,D)(cL, D) (320)

+ v
(
b∗T (cL,D)(cL, D);T (cL, D)

∣∣ cL, D) (321)

for all s ∈ R. Therefore, we have

H(s) = sup
(cL,D)∈A(Ω)

{
v
(
b∗T (cL,D)(cL, D);T (cL, D)

∣∣ cL, D)
+ s − b∗T (cL,D)(cL, D) + F (cL, D) − F (c∗L, D

∗) − φ
}
, (322)

and combining this with the assumption that the pair (c∗L, D
∗) solves the static optimization

problem Eq.(53)–Eq.(57), we deduce that

H(s) = v
(
b∗T (c∗L,D

∗)(c
∗
L, D

∗);T (c∗L, D
∗)
∣∣∣ c∗L, D∗)+ s− b∗T (c∗L,D

∗)(c
∗
L, D

∗)− φ. (323)
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This in turn implies that we have

G(s) = sup
e≥0

{
v (s+ e;T (c∗L, D

∗)| c∗L, D∗)− e− 1{e>0}φ
}

(324)

and the desired result now follows by observing that, since it is always possible for the bank

to raise outside equity, the right hand of the inequality is dominated by the equity value

function evaluated at the point s. �
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