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Abstract

We study an economy populated by three groups of myopic agents: Constrained

agents subject to a portfolio constraint that limits their risk-taking, unconstrained

agents subject to a standard nonnegative wealth constraint, and arbitrageurs with

access to a credit facility. Such credit is valuable as it allows arbitrageurs to exploit

the limited arbitrage opportunities that emerge endogenously in reaction to the

demand imbalance generated by the portfolio constraint. The model is solved in

closed-form and we show that, in contrast to existing models with frictions and

logarithmic agents, arbitrage activity has an impact on the price level and generates

both excess volatility and the leverage effect. We show that these results are due

to the fact that arbitrageurs amplify fundamental shocks by levering up in good

times and deleveraging in bad times.
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1 Introduction

Textbook asset pricing theory asserts that arbitrage opportunities cannot exist in a

competitive market because they would be instantly exploited, and thereby eliminated,

by arbitrageurs. This basic principle is certainly valid for riskless arbitrage opportunities

defined as trades that require no initial investment and whose value can only grow over

time.1 However, there is no reason to believe that it should hold for risky arbitrage

opportunities, such as convergence trades,2 that guarantee a sure profit at some future

date but require capital to fund potential losses at interim dates. Indeed, the fact that

arbitrageurs have limited capital and are subject to solvency requirements limits their

ability to benefit from such risky arbitrage opportunities and implies that they may

subsist in equilibrium. In such cases, the trading activity of arbitrageurs will not suffice to

close the arbitrage opportunities but will nonetheless have an impact on the equilibrium,

and the goal of this paper is to investigate the effect of this risky arbitrage activity on

asset prices, volatilities, risk sharing and welfare.

To address these questions it is necessary to construct a general equilibrium model in

which risky arbitrage opportunities exist in the first place. We achieve this by considering

a model of an exchange economy similar to those of Basak and Cuoco (1998) and

Hugonnier (2012). Specifically, we start from a continuous-time model that includes

a riskless asset in zero net supply, a dividend-paying risky asset in positive supply and

two groups of agents with logarithmic preferences. Agents in both groups are subject

to a standard nonnegativity constraint on wealth,3 but while agents in the first group

are unconstrained in their portfolio choice, we assume that agents in the second group

are subject to a portfolio constraint that limits their risk-taking and, thereby, tilts their

demand towards the riskless asset. This portfolio constraint generates excess demand

for the riskless asset and captures in a simple way the global imbalance phenomenon

pointed out by Caballero (2006), Caballero, Farhi, and Gourinchas (2008) and Caballero

1Such an opportunity arises for example when two assets that carry the same exposure to risk offer
different returns. See Gromb and Vayanos (2002) for a model where such arbitrage opportunities arise
due to market segmentation, and Basak and Croitoru (2000) for a model where they arise due to the
fact that securities are subject to different margin constraints.

2Examples of such arbitrage opportunities include mispricing in equity carve-outs Lamont and Thaler
(2003a,b), dual class shares Lamont and Thaler (2003a) and the simultaneous trading of shares from
Siamese twin conglomerates such as Royal Dutch and Shell. See Rosenthal and Young (1990), Lamont
and Thaler (2003a,b), Ashcraft, Gârleanu, and Pedersen (2010) and Gârleanu and Pedersen (2011).

3Nonnegativity constraints on wealth were originally proposed by Dybvig and Huang (1988) as a
realistic mechanism to preclude doubling strategies. They are widely used, and usually considered
innocuous, in continuous-time models but are also introduced in discrete-time, infinite-horizon models.
See for example Kocherlakota (1992) and Magill and Quinzii (1994) among others.
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and Krishnamurthy (2009) among others. This excess demand naturally implies that the

interest rate decreases and the market price of risk increases compared to a frictionless

economy. But it also implies that the stock and the riskless asset are overvalued in that

their equilibrium prices each include a strictly positive bubble.4 The intuition is that

even though agents of both groups are price takers, the presence of constrained agents

places an implicit liquidity provision constraint on unconstrained agents through the

market clearing conditions: At times when the portfolio constraint binds, unconstrained

agents have to hold the securities that constrained agents cannot, and this is where the

mispricing finds its origin. Bubbles arise to incite unconstrained agents to provide a

sufficient amount of liquidity, and they persist in equilibrium because the nonnegative

wealth constraint prevents them from indefinitely scaling their positions.

To study the impact of arbitrage activity on equilibrium outcomes we then introduce

a third group of agents that we refer to as arbitrageurs. These agents have logarithmic

utility and are unconstrained in their portfolio choice, but they differ from unconstrained

agents along two important dimensions. First, these agents initially hold no capital and

thus will only be able to consume if they can exploit the risky arbitrage opportunities

that arise due to the presence of constrained agents. Second, these agents have access to

a credit facility that enhances their trading opportunities by allowing them to weather

transitory periods of negative wealth. This facility should be thought of as a reduced-form

for various types of uncollateralized credit such as unsecured financial commercial paper5

(see e.g. Kacperczyk and Schnabl (2009), Adrian, Kimbrough, and Marchioni (2010)),

implicit lines of credit (see e.g. Sufi (2009)), or loan guarantees. To capture the fact that

the availability of arbitrage capital tends to be procyclical (see e.g. Ang, Gorovyy, and

Van Inwegen (2011) and Ben-David, Franzoni, and Moussawi (2012)) we assume that

this credit facility is proportional to the market portfolio.

We derive the unique equilibrium in closed form in terms of aggregate consumption

and an endogenous state variable that measures the consumption share of constrained

agents. Importantly, because the portfolio constraint acts as a partial hedge against bad

fundamental shocks this state variable is negatively correlated with aggregate consump-

4The bubble on the price of a security is the difference between the market price of the security and
its fundamental value defined as the minimal amount of capital that an unconstrained agent needs to
hold in order to replicate the cash flows of the security while maintaining nonnegative wealth. See Santos
and Woodford (1997), Loewenstein and Willard (2000), Hugonnier (2012) and Section 2.5 below for a
precise definition and a discussion of the basic properties of asset pricing bubbles.

5Commercial paper is among the largest source of short term funding for both financial and non
financial institutions. For example, over the period 2010–2013 the average amount of commercial paper
outstanding was 1.04 trillion dollars, and about half of that amount is accounted for by unsecured paper
issued by financial institutions, see Fred (2014).
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tion. The analysis of the equilibrium sheds light on the disruptive role of arbitrageurs

in the economy, and reveals that risky arbitrage activity results in an amplification

of fundamental shocks that may help understand empirical regularities such as excess

volatility and the leverage effect. The main implications can be summarized as follows.

First, we show that arbitrage activity brings the equilibrium prices of both securities

closer to their fundamental values and simultaneously has a negative impact on the

equilibrium stock price level. The latter finding is unique to our setting and stands in

stark contrast to what happens in exchange economies with exogenous dividends and

logarithmic preferences where the impact of frictions is entirely captured by the interest

rate and market price of risk, see for example Detemple and Murthy (1997), Basak and

Cuoco (1998) and Basak and Croitoru (2000).

Second, and related, we show that the trading of arbitrageurs pushes the stock volatil-

ity above that of the underlying dividend process. This excess volatility is self-generated

within the system, and comes from the fact that arbitrageurs amplify fundamental shocks

by optimally levering up their positions in good times, and deleveraging in bad times.

The excess volatility component implied by our model is quantitatively significant, and

increases with both the size of the arbitrageurs’ credit facility and the consumption

share of constrained agents. Since the latter is negatively correlated with aggregate

consumption our model implies that volatility tends to increase when the stock price

falls, and it follows that risky arbitrage activity is consistent with the leverage effect

documented by Black (1976), Schwert (1989), Mele (2007) and Aı̈t Sahalia, Fan, and

Li (2013) among others. Furthermore, we show that because constrained agents are

partially shielded from bad fundamental shocks the market price of risk is negatively

correlated with aggregate consumption and it follows that, in line with the evidence in

Mehra and Prescott (1985, 2003) and Fama and French (1989), our model also produces

a countercyclical equity premium.

Third, we show that, because arbitrageurs are always levered in equilibrium, arbitrage

activity mitigates the portfolio imbalance induced by constrained agents and results in

an increase of the interest rate and a decrease of the market price of risk compared to

the model where arbitrageurs are absent. This liquidity provision however comes at a

cost as we show that arbitrage activity has a negative impact on the consumption share

of constrained agents and their welfare. This occurs through two channels: Arbitrage

activity reduces the stock price and hence the initial wealth of constrained agents, but

it also increases the stock volatility and therefore tightens the portfolio constraint that

limits the risk-taking of constrained agents.
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Our work is related to several recent contributions in the asset pricing literature.

Basak and Croitoru (2000) show that mispricing can arise between two securities that

carry the same risk if all agents are subject to a portfolio constraint that prevents them

from exploiting the corresponding riskless arbitrage opportunity. If the constraint is

removed even for a small fraction of the population then the unconstrained are able to

close the arbitrage opportunity and mispricing becomes inconsistent with equilibrium.

By contrast, we build a model where risky arbitrage opportunities persist in equilibrium

despite the presence of unconstrained agents because they require agents to hold enough

capital to sustain interim losses. Basak and Croitoru (2006) consider a production

economy version of Basak and Croitoru (2000) in which they introduce risk-neutral

arbitrageurs who hold no wealth and are subject to a portfolio constraint that sets an

exogenous limit on the size of their position. As in this paper, the activity of these

arbitrageurs brings prices closer to fundamentals but the linear production technology

that the authors use determines the stock price and its volatility exogenously. On the

contrary, all prices in our model are endogenously determined and we show that arbitrage

activity generates excess volatility. Other key differences are that while the arbitrageurs

in Basak and Croitoru (2006) saturate their constraint and instantaneously consume all

profits, the arbitrageurs in this paper are risk-averse, accumulate wealth over time and

never actually exhaust their credit limit.

Our findings are also related to those of Gromb and Vayanos (2002) who investigate

the welfare implications of financially constrained arbitrage in a segmented market setting

with zero net supply securities and an exogenous interest rate. In their model arbitrageurs

exploit the riskless arbitrage opportunities that arise across markets and, thereby, allow

Pareto improving trade to occur. By contrast, the arbitrageurs in our paper do not

alleviate constraints and their trading activity may hinder the welfare of both constrained

and unconstrained agents. In a related contribution Gârleanu, Panageas, and Yu (2013)

study a model with endogenous entry where a continuum of investors, assets and financial

intermediaries are located on a circle. In their model participation costs and collateral

constraints prevent agents from trading in all assets. This implies that diversifiable risk

is priced and exposes riskless arbitrage opportunities that cannot be eliminated due to

prohibitive participation costs. By contrast, we show that the presence of constrained

agents generates risky arbitrage opportunities that persist in equilibrium because uncon-

strained agents and arbitrageurs are subject to wealth constraints and study the feedback

effects of arbitrage activity on the equilibrium outcomes.
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Most of the existing models with risky arbitrage opportunities are cast in partial

equilibrium. For example, Liu and Longstaff (2004) study the portfolio choice problem

of a risk averse arbitrageur subject to margin constraints and who can trade in a riskless

asset with a constant interest rate and an exogenous arbitrage opportunity modeled as a

Brownian bridge.6 Kondor (2009) considers a model in which a risk neutral arbitrageur

exploits an exogenous arbitrage opportunity whose duration is distributed exponentially.

As in this paper, the price gap between the mispriced securities may diverge before it

converges and thereby inflict interim losses on arbitrageurs. By contrast, we study the

role of credit in enlarging the set of strategies available to arbitrageurs and its impact on

equilibrium quantities such as prices, volatilities and interest rates within a model where

mispricing is microfounded and all markets clear.

In a recent contribution Haddad (2013) also considers a model where some agents

are levered and bear more aggregate risk but the mechanism is different. In his setting,

agents choose dynamically whether to be levered in the stock in which case they actively

participate in the firm’s management. The collective activism of levered agents improves

the growth rate of dividends, and these agents are remunerated for this service in a

competitive way that makes the firm indifferent to the level of active capital. The analysis

of Haddad (2013) also highlights the impact of deleveraging risk on equilibrium outcomes

but, in contrast to this paper, the equilibrium of his economy features neither risky

arbitrage opportunities nor excess volatility.

Finally, we highlight the connections with the literature on rational asset pricing

bubbles.7 Santos and Woodford (1997) and Loewenstein and Willard (2000) show that

in frictionless economies with complete markets bubbles may exist on zero net supply

securities, such as options and futures, but not on positive net supply securities such as

stocks. Hugonnier (2012) shows that the presence of portfolio constraints may generate

bubbles also on positive net supply securities even if some agents are unconstrained, and

Prieto (2012) extends these conclusions to economies where agents have heterogenous risk

aversion and beliefs. In addition to these contributions, there are papers that analyze the

properties of bubbles in partial equilibrium settings. In particular, Cox and Hobson (2005)

6In the same spirit Jurek and Yang (2007) and Liu and Timmermann (2012) study portfolio choice
problems in which the value of the arbitrage opportunity follows a mean-reverting process so that the
amount of time necessary to generate a profit is random.

7The literature on speculative bubbles (see e.g. Miller (1977), Harrison and Kreps (1978) and
Scheinkman and Xiong (2003)) uses a different definition of the fundamental value that is not based
on any cash-flow replication considerations and, therefore, cannot connect bubbles to the existence of
arbitrage opportunities. Furthermore, these models are in general set in partial equilibrium as they
assume the existence of a riskless technology in infinitely elastic supply.
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and Heston, Loewenstein, and Willard (2007) study bubbles on the price of derivatives,

and Jarrow, Protter, and Shimbo (2010) analyze bubbles in models with incomplete

markets. An important difference between these partial equilibrium studies and the

present paper lies in the fact that they assume the existence of a risk neutral measure

and, therefore, rule out the existence of a bubble on the riskless asset. By contrast, we

show that such a pricing measure cannot exist in our model because the existence of a

bubble on the riskless asset is a necessary condition for equilibrium.

The remainder of the paper is organized as follows. In Section 2 we present our

assumptions and provide a basic discussion of bubbles. In Section 3 we solve the individual

optimization problems, derive the equilibrium and discuss its main properties. In Section

4 we analyze the equilibrium trading strategies and present the implications of the model

for excess volatility and the leverage effect. In Appendix A we show that our results

remain qualitatively unchanged under an alternative, less cyclical specification of the

credit facility that puts a constant bound on the discounted losses that the arbitrageurs

is allowed incur. All proofs are gathered in Appendix B.

2 The model

2.1 Securities markets

We consider a continuous-time economy on an infinite horizon.8 Uncertainty in the

economy is represented by a probability space carrying a Brownian motion Zt and in

what follows we assume that all random processes are adapted with respect to the usual

augmentation of the filtration generated by this Brownian motion.

Agents trade in two securities: A riskless asset in zero net supply and a stock in

positive supply of one unit. The price of the riskless asset evolves according to

S0t = 1 +

∫ t

0

S0urudu (1)

for some short rate process rt that is to be determined in equilibrium. On the other

hand, the stock is a claim to a dividend process δt that evolves according to a geometric

Brownian motion with constant drift µδ and volatility σδ > 0. The stock price is denoted

8We assume an infinite horizon to avoid having to keep track of time as a state variable, but this
assumption is not needed for the validity of our conclusions. In particular, bubbles also arise in a finite
horizon version of our model and the arbitrage activity that they attract results in a price decrease and
a countercyclical excess volatility component in equilibrium stock returns.
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by St and evolves according to

St +

∫ t

0

δudu = S0 +

∫ t

0

Su(µudu+ σudZu) (2)

for some initial value S0 > 0, some drift µt and some volatility σt that are to be determined

endogenously in equilibrium.

2.2 Trading strategies

A trading strategy is a pair (πt;φt) where πt represents the amount invested in the stock

while φt represents the amount invested in the riskless asset. A trading strategy is said to

be self-financing given initial wealth w and consumption rate ct ≥ 0 if the corresponding

wealth process satisfies

Wt ≡ πt + φt = w +

∫ t

0

(φuru + πuµu − cu) du+

∫ t

0

πuσudZu. (3)

Implicit in the definition is the requirement that the trading strategy and consumption

plan be such that the above stochastic integrals are well-defined.

2.3 Agents

The economy is populated by three agents indexed by k ∈ {1, 2, 3}. Agent k is endowed

with nk ∈ [0, 1] units of the stock and his preferences are represented by

Uk(c) ≡ E

[∫ ∞
0

e−ρt log(ct)dt

]
for some subjective discount rate ρ > 0. In what follows we let wk ≡ nkS0 denote the

initial wealth of agent k computed at equilibrium prices.

The three agents have homogenous preferences and beliefs but differ in their trading

opportunities. Specifically, agent 1 is free to choose any strategy whose wealth remains

nonnegative at all times, and we will refer to him as the unconstrained agent. Agent 2, to

whom we will refer as the constrained agent, is subject to the same nonnegative wealth

requirement as agent 1 but is also required to choose a strategy that satisfies

πt ∈ Ct ≡ {π ∈ R : |σtπ| ≤ (1− ε)σδWt} ,
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for some given ε ∈ [0, 1]. This portfolio constraint can be thought of as limiting the

amount of risk the agent is allowed to take. In particular, if σt ≥ σδ (which we will

show is the case in equilibrium) then it forces agent 2 to keep a strictly positive fraction

of his wealth in the riskless asset at all times and, thereby, introduces an imbalance

that ultimately generates bubbles. This constraint is also a special case of the general

risk constraints in Cuoco, He, and Isaenko (2008) and is studied in both Gârleanu and

Pedersen (2007) and Prieto (2012) as a constraint on conditional value-at-risk.

Agent 3 is free to choose any self-financing strategy but, in contrast to the two other

agents, he is not required to maintain nonnegative wealth. Instead, we assume that this

agent has access to a credit facility that allows him to withstand short term deficits

provided that his wealth satisfies the lower bound

W3t + ψSt ≥ 0, t ≥ 0, (4)

and the transversality condition

lim inf
T→∞

E[ξTWT ] ≥ 0 (5)

for some exogenously fixed ψ ≥ 0 where ξt is the state price density process defined in

(6) below. This agent should be thought of as an arbitrageur whose funding liquidity

conditions are determined by the magnitude of ψ. The fact that the amount of credit

available to this arbitrageur increases with the size of the market is meant to capture in

a simple way the observation that capital availability improves in times where the stock

market is high, see for example Ben-David, Franzoni, and Moussawi (2012) and Ang,

Gorovyy, and Van Inwegen (2011) for evidence on hedge fund trading.

Since agent 3 can continue trading in states of negative wealth, the wealth constraint

of the arbitrageur in (4) allows for excess borrowing. Trades in these states may be

considered uncollateralized as agent 3 does not have enough assets to cover his liabilities

in case of instantaneous liquidation. Note however that, due to his preferences, agent 3

will never willingly stop servicing debt or risk a rollover freeze of short-term debt. In

other words, agent 3 is balance sheet insolvent but never cash-flow insolvent in states of

negative wealth and, as a result, his debt is riskless at all times.

To emphasize the interpretation of agent 3 as an arbitrageur, we assume from now on

that n3 = 0 so that his initial wealth is zero.9 This in turn implies that the endowments

9For simplicity we assume that the mass and initial wealth of arbitrageurs are exogenously fixed but
these quantity can be easily endogenized by assuming that arbitrageurs are heterogenous in the size of
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of the other agents can be summarized by the number n = n2 ∈ (0, 1] of shares of the

stock initially held by the constrained agent.

2.4 Definition of equilibrium

The concept of equilibrium that we use is similar to that of equilibrium of plans, prices

and expectations introduced by Radner (1972):

Definition 1. An equilibrium is a pair of security price processes (S0t, St) and an array

{ckt, (πkt;φkt)}3
k=1 of consumption plans and trading strategies such that:

1. Given (S0t, St) the plan ckt maximizes Uk over the feasible set of agent k and is

financed by the trading strategy (πkt, φkt).

2. Markets clear:
∑3

k=1 φkt = 0,
∑3

k=1 πkt = St and
∑3

k=1 ckt = δt.

An equilibrium is said to have arbitrage activity if the consumption plan of the arbitrageur

is not identically zero.

Since the arbitrageur starts from zero wealth it might be that the set of consumption

plans he can finance is empty. In such cases, his consumption and optimal portfolio are set

to zero and the equilibrium only involves the two other agents. To determine conditions

under which the arbitrageur participates it is necessary to characterize his feasible set.

This is the issue to which we now turn.

2.5 Feasible sets, bubbles, and limited arbitrages

Let (S0t, St) denote the prices in a given equilibrium and assume that there are no riskless

arbitrages for otherwise the market could not be in equilibrium. As is well-known (see

e.g., Duffie (2001)), this implies that µt = rt + σtθt for some process θt. This process is

referred to as the market price of risk and is uniquely defined on the set where volatility

is non zero. Now consider the state price density defined by

ξt =
1

S0t

exp

(
−
∫ t

0

θudZu −
1

2

∫ t

0

|θu|2du
)
. (6)

their credit facility and have to pay a cost to enter the market. In such a setting an arbitrageur will enter
only if the profits that his credit facility allows him to generate exceed the entry cost, and the aggregation
of these decisions gives rise to a representative arbitrageur similar to the one we use but whose credit
facility reflects the entry costs and the cross-sectional distribution of individual credit facilities.
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The following proposition shows that the ratio ξt,u = ξu/ξt can be used as a pricing kernel

to characterize the feasible sets of agents 1 and 3 and provides conditions under which

the arbitrageur participates in the market.

Proposition 1. Assume that limT→∞E[ξTST ] = 0.10 A consumption plan ct is feasible

for agent k ∈ {1, 3} if and only if

E

[∫ ∞
0

ξtctdt

]
≤ wk + 1{k=3}ψ(S0 − F0)

where the nonnegative process

Ft ≡ Et

[∫ ∞
t

ξt,uδudu

]
(7)

gives the minimal amount that agent 1 needs to hold at time t ≥ 0 to replicate the

dividends of the stock while maintaining nonnegative wealth. In particular, the feasible

set of agent 3 is non empty if and only if ψ(S0 − F0) > 0.

Following the literature on rational bubbles (see for example Santos and Woodford

(1997), Loewenstein and Willard (2000), and Hugonnier (2012)) we refer to Ft in (7) as

the fundamental value of the stock; and to

Bt ≡ St − Ft = St − Et
[∫ ∞

t

ξt,uδudu

]
≥ 0

as the bubble on its price. Using this terminology, Proposition 1 shows that the feasible

set of the arbitrageur is empty unless two conditions are satisfied: There needs to be

a strictly positive bubble on the stock, and the agent must have access to the credit

facility. The intuition behind this result is clear: Since the arbitrageur does not hold any

initial wealth he can only consume in the future if there are arbitrage opportunities in

the market that he is able to exploit, at least to some extent.

At first glance, it might seem that a stock bubble should be inconsistent with optimal

choice, and therefore also with the existence of an equilibrium, since it implies that two

assets with the same cash flows (the stock and the portfolio that replicates its dividends)

are traded at different prices. The reason why this is not so is that, due to wealth

constraints, bubbles only constitute limited arbitrage opportunities. To see this, consider

10This transversality condition guarantees that the deflated price of the stock converges to zero at
infinity and allows for a simple characterization of the feasible set of agent 3. This condition can be
relaxed at the cost of a more involved characterization (see Lemma B.1 in the Appendix) but is without
loss of generality since we show that it necessarily holds in equilibrium.
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the textbook strategy that sells short x > 0 shares, buys the portfolio that replicates the

corresponding cash flows over a given finite time interval [0, T ] and invests the remainder

in the riskless asset. The value process of this trading strategy is

At(x;T ) = x (S0tB0(T )−Bt(T ))

where

Bt(T ) ≡ St − Ft(T ) = St − Et
[∫ T

t

ξt,uδudu+ ξt,TST

]
≥ 0 (8)

gives the bubble on the price of the stock over the interval [t, T ]. This trade requires

no initial investment and if the stock price includes a strictly positive bubble then its

terminal value AT (x;T ) = xS0TB0(T ) is strictly positive so it does constitute an arbitrage

opportunity in the usual sense. But this opportunity is risky because it entails the

possibility of interim losses and, therefore, cannot be implemented to an arbitrary scale

by the agents in the economy. In particular, the arbitrageur can only implement this

trade up to size ψ because otherwise the solvency constraint (4) would not be satisfied.

Similarly, the unconstrained agent can only implement this arbitrage if he holds sufficient

collateral in the form of cash or securities.

The discussion has so far focused on the stock but bubbles may be defined on any

security, including the riskless asset. Indeed, over an interval [0, T ] the riskless asset can

be viewed as a derivative security that pays a single terminal dividend equal to S0T . The

fundamental value of such a security is F0t(T ) = Et [ξt,TS0T ] whereas its market value is

simply given by S0t, and this naturally leads to defining the finite horizon bubble on the

riskless asset as

B0t(T ) ≡ S0t − F0t(T ) = S0t

(
1− Et

[
ξt,T

S0T

S0t

])
. (9)

As in the case of the stock, a bubble on the riskless asset is consistent with both optimal

choice and the existence of an equilibrium in our economy. In fact, we show below that

due to the presence of constrained agents bubbles on both the stock and the riskless asset

are necessary for markets to clear.

Remark 1. Equation (9) shows that the riskless asset has a bubble over [0, T ] if and only

if the process Mt ≡ S0tξt satisfies E[MT ] < M0 = 1. Since the economy is driven by a

single source of risk this process is the unique candidate for the density of the risk-neutral
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measure and it follows that the presence of a bubble on the riskless asset is equivalent to

the non existence of the risk-neutral measure, see Loewenstein and Willard (2000), and

Heston, Loewenstein, and Willard (2007) for derivatives pricing implications.

Remark 2. Combining (2) and (3) reveals that under the assumption of Proposition 1

a given consumption plan is feasible for the arbitrageur if and only there exists a trading

strategy (π∗t ;φ
∗
t ) such that the process

W ∗
t = Wt + ψSt = ψS0 +

∫ t

0

(ruφ
∗
u + π∗uµu − cu − ψδu)du+

∫ t

0

π∗uσudZu (10)

is nonnegative and satisfies the transversality condition (5). This shows that the feasible

set of the arbitrageur coincides with that of an auxiliary agent who has initial capital

ψS0, receives income at rate −ψδt and is subject to a liquidity constraint that requires

him to maintain nonnegative wealth at all times as in He and Pagès (1993), El Karoui

and Jeanblanc-Picqué (1998) and Detemple and Serrat (2003).

Given this observation it might seem surprising that the static characterization of

the arbitrageur’s feasible set involves only the unconstrained state price density ξt rather

than a family of shadow state price densities. This is due to the fact that, because the

implicit income rate −ψδt in (10) is negative, the liquidity constraint of the auxiliary

agent is non binding. The intuition is clear: In order to consume at a nonnegative rate

while simultaneously receiving negative income over time this agent must necessarily

maintain nonnegative wealth at all times. Mathematically, it follows from El Karoui and

Jeanblanc-Picqué (1998) and the above observation that a consumption plan is feasible

for the arbitrageur if and only if it satisfies

sup
Λ∈L

E

[∫ ∞
0

Λuξu(cu + ψδu)du

]
≤ ψS0

where L denotes the set of nonnegative, decreasing processes with initial value smaller

than one and, since ψδt ≥ 0, we have that the supremum is attained by Λ∗u ≡ 1. This

important simplification implies that the marginal utility of the arbitrageur is a function

of the unconstrained state price density and allows us to characterize the equilibrium in

terms of an endogenous state variable that follows a standard diffusion process rather

than a reflected diffusion process, see Proposition 3.
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3 Equilibrium

3.1 Individual optimality

Combining Proposition 1 with well-known results on logarithmic utility maximization

leads to the following characterization of optimal policies.

Proposition 2. Assume that limT→∞E[ξTST ] = 0. Then the optimal consumption and

trading strategies of the three agents are given by

ckt = ρ
(
Wkt + 1{k=3}ψBt

)
(11)

and

π1t = (θt/σt)W1t

π2t = κt(θt/σt)W2t (12)

π3t = (θt/σt)(W3t + ψBt)− ψ(ΣB
t /σt) (13)

where

κt = min

(
1;

(1− ε)σδ
|θt|

)
∈ [0, 1], (14)

and the process ΣB
t denotes the diffusion coefficient of the process Bt.

The solution for the unconstrained agent 1 is standard given logarithmic preferences.

Indeed, this agent invests in an instantaneously mean-variance efficient portfolio and has

a constant marginal propensity to consume equal to his discount rate. The solution for

the constrained agent 2 follows from Cvitanić and Karatzas (1992) and shows that the

constraint binds in states where the market price of risk is high. This is intuitive: Since

agent 2 has logarithmic preferences we know that absent the portfolio constraint he would

invest in proportion to the market price of risk and the result follows by noting that the

constraint limits the amount of risk he is allowed to take.

The solution for the arbitrageur is novel and illustrates how this agent is able to

reap arbitrage profits, and thereby consume, despite the fact that he holds no initial

capital. Specifically, (13) shows that the optimal strategy for this agent is to short ψ

shares of the stock, buy ψ units of the portfolio that replicates the stock dividends,

and invest the strictly positive net proceeds of these transactions into the same mean

13



variance efficient portfolio as agent 1. This strategy is only admissible because of the

credit facility and allows the arbitrageur to increase his consumption basis from W3t to

W3t + ψBt = e−ρtψB0/ξt. The optimal consumption in (11) then follows by noting that,

since the arbitrageur has logarithmic preferences, his marginal propensity to consume is

constant and equal to his subjective discount rate.

Remark 3. The optimal policy of the arbitrageur bears a close resemblance to that of

an hypothetical agent with logarithmic utility and no initial wealth who receives labor

income at rate et in a complete market with state price density ξt. Indeed, the optimal

consumption of such an agent is

ct = ρ(Wt +Ht) = ρe−ρt(H0/ξt)

where Ht gives the fundamental value of the agent’s future income, and an application

of Itô’s lemma shows that his optimal trading strategy is

πt = (θt/σt)(Wt +Ht)− (ΣH
t /σt)

where ΣH
t denotes the diffusion coefficient of the process Ht. This solution is isomorphic

to that given in Proposition 2 with one important caveat: Instead of arising exogenously

from the agent’s income, the process Ht = ψBt in this paper is endogenously generated

by the profits that arbitrageurs are able to reap from the market.

Remark 4. Since W3t +ψSt = ψ(Ft + e−ρtB0/ξt) > 0 the arbitrageur never exhausts his

credit limit. Although of a different nature, this result is reminiscent of Liu and Longstaff

(2004) who study the portfolio decisions of an arbitrageur facing an exogenous arbitrage

opportunity modeled as a Brownian bridge and a margin constraint.

3.2 Equilibrium allocations and risk-sharing

To characterize the equilibrium we use a representative agent with stochastic weights

that allows to easily clear markets despite the imperfect risk sharing induced by the

presence of the constrained agent (see Cuoco and He (1994)). The utility function of this

representative agent is defined by

u (c, γ, λt) ≡ max
c1+c2+c3=c

(log(c1) + λt log(c2) + γ log(c3))

14



where λt > 0 is an endogenously determined weighting process that encapsulates the

differences across the agents and γ ≥ 0 is an endogenous constant that determines the

relative weight of arbitrageurs in the economy.

By Proposition 2, we have that the first order condition for agents 1 and 3 can be

written as ξt = e−ρt(ck0/ckt) for k = 1, 3. Comparing these to the first order condition

of the representative agent’s problem shows that the equilibrium state price density and

the equilibrium consumption are given by

ξt = e−ρt
uc (δt, γ, λt)

uc (δ0, γ, λ0)
= e−ρt

δ0(1− s0)

δt(1− st)
, (15)

and

c2t = ρW2t = stδt, (16)

c1t = ρW1t =
1

1 + γ
(1− st)δt, (17)

c3t = ρ(W3t + ψBt) = δt − c1t − c2t =
γ

1 + γ
(1− st)δt,

where the endogenous state variable

st ≡
c2t

δt
=

λt
1 + γ + λt

∈ (0, 1) (18)

tracks the consumption share of the constrained agent. Combining (6), (12), (15) and

(17) then allows to determine the equilibrium drift and volatility of this state variable,

and delivers the following explicit characterization of equilibrium.

Proposition 3. In equilibrium, the riskless rate of interest and the market price of risk

are explicitly given by

θt = σδ

(
1 +

εst
1− st

)
, (19)

rt = ρ+ µδ − σδθt = ρ+ µδ − σ2
δ

(
1 +

εst
1− st

)
, (20)

and the consumption share of the constrained agent evolves according to the stochastic

differential equation

dst = −stεσδ
(
dZt +

st
1− st

εσδdt

)
(21)
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with initial condition s0 = ρw2/δ0.

The above characterization of equilibrium is notable for two reasons. First, it follows

from (12), (14) and (19) that the portfolio of agent 2 satisfies

σtπ2t = W2t(1− ε)σδ < W2tθt. (22)

This shows that the portfolio constraint binds at all times in equilibrium and it follows

that agent 2 constantly has a positive demand for the riskless asset. This in turn implies

that prices should adjust to entice agents 1 and 3 to borrow and explains why, as shown by

(19) and (20), the market price of risk increases and the interest rate decreases compared

to an unconstrained economy (ε = 0). Second, (21) shows that the consumption share

of the constrained agent is negatively correlated with dividends and therefore tends to

decrease (increase) following sequences of positive (negative) cash flow shocks. The

intuition for this result is clear: by limiting the amount of risk that agent 2 can take, the

portfolio constraint implies that his consumption is less sensitive to bad shocks but also

limits the extent to which it benefits from sequences of good shocks.

3.3 Equilibrium prices

To compute the equilibrium stock price, we rely on the market clearing conditions which

require that St =
∑3

k=1 Wkt. Combining this identity with (11), (15) and the clearing of

the consumption good market gives

St = Pt − ψBt = Pt − ψ(St − Ft) (23)

where Pt = δt/ρ is the stock price that would prevail in equilibrium if arbitrageurs were

absent from the economy and

Ft = Et

[∫ ∞
t

ξt,uδudu

]
= δt(1− st)Et

[∫ ∞
t

e−ρ(u−t) du

1− su

]
gives the fundamental value of the stock. Setting α = ψ/(1 +ψ) ∈ [0, 1] and solving (23)

gives

St = αFt + (1− α)Pt.
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To complete the characterization of the equilibrium, it remains to determine whether the

price includes a bubble. Using the above expression together with (18) shows that

Bt = (1− α)(Pt − Ft) =
(1− α)δt
1 + γ + λt

Et

[∫ ∞
t

e−ρ(u−t) (λt − λu) du
]

(24)

and it follows that the stock price is bubble free if and only if the weighting process is a

martingale. An application of Itô’s lemma gives

dλt = (1 + γ)d

(
st

1− st

)
= −λt(1 + γ + λt)

εσδ
1 + γ

dZt,

so that the weighting process is a local martingale. However, the following proposition

shows that this local martingale fails to be a true martingale and, thereby, proves that

any equilibrium includes a bubble on the stock and arbitrage activity.

Proposition 4. The weighting process is a strict local martingale. In particular, the

stock price includes a strictly positive bubble in any equilibrium.

Combining the above proposition with (7), (24) and Itô’s product rule reveals that in

equilibrium the discounted gains process

ξtSt +

∫ t

0

ξuδudu = Et

[∫ ∞
0

ξuδudu

]
+ ξtBt

is a local martingale, as required to rule out riskless arbitrage opportunities, but not a true

martingale. This result shows that the distinction between local and true martingales,

which is usually perceived as a technicality, actually captures an important economic

phenomenon, namely the presence of an asset pricing bubble. It also clearly indicates that

continuous-time bubbles are of a different nature than those that may arise in discrete-

time models. In particular, since a discrete-time local martingale is a true martingale over

any finite horizon (see Meyer (1972)), the same arguments as in Santos and Woodford

(1997) imply that a stock bubble cannot arise in a discrete-time version of our model. By

contrast, Proposition 4 shows that in continuous-time a bubble arises as soon as there are

constrained agents in the economy and cannot be eradicated by arbitrage activity unless

arbitrageurs have access to unbounded credit.

Our next result establishes the existence and uniqueness of the equilibrium and derives

closed form expressions for the stock price and its bubble.
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Theorem 1. There exists a unique equilibrium. In this equilibrium the stock price and

its bubble are explicitly given by

St = (1− αsηt )Pt (25)

Bt = St − Ft = (1− α)sηtPt (26)

with the constant

η ≡ 1

2
+

√
1

4
+

2ρ

(εσδ)2
> 1,

and the consumption share of the constrained agent evolves according to (21) with initial

condition given by the unique s0 ∈ (0, 1) such that s0 = n(1− αsη0).

The above theorem offers several important conclusions. First, it shows that the

unique equilibrium includes a strictly positive bubble on the stock and, therefore, gener-

ates arbitrage activity as soon as agent 3 has access to a credit facility in that α > 0.

Second, it shows that in stark contrast to existing equilibrium models with frictions

and logarithmic agents (see e.g. Detemple and Murthy (1997), Basak and Cuoco (1998)

and Basak and Croitoru (2000)) the combination of portfolio constraints and arbitrage

activity generates a price/dividend ratio that is both time-varying and lower than that

which would have prevailed in the absence of arbitrageurs. Importantly, (25) shows that

the price/dividend ratio is a decreasing function of the consumption share of constrained

agents and, since the latter is negatively correlated with fundamental shocks, we have

that arbitrage activity generates both excess volatility and the leverage effect despite the

fact that all agents have logarithmic preferences. We will come back to this important

property in Section 4.2 where we will be able to interpret it in light of the equilibrium

portfolio strategies that we derive in Section 4.1.

Third, the expression for the stock price shows that arbitrage activity has a negative

impact on the equilibrium price level. One way to understand this result is to observe

that arbitrage activity makes the stock more volatile and thereby reduces the value of

the collateral services it provides. Another way to understand this result is to view the

price decrease as rents to the arbitrage technology. Comparing the consumption of the

agent 1 to that of agent 3 and using (26) shows that these rents accrue to the arbitrageur

in the form of an infinitely-lived stream of consumption at rate αδts
η
t . This additional

consumption reduces the amount of dividend available to stockholders to δt(1−αsηt ) and
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the equilibrium stock price is simply given by the usual logarithmic valuation formula

applied to this reduced dividend process.

Our next result shows that, in addition to a stock bubble, the equilibrium price system

also includes a bubble on the riskless asset over any investment horizon. Importantly,

combining this result with Remark 1 shows that in the unique equilibrium of our economy

a risk-neutral probability measure does not exist.

Proposition 5. In the unique equilibrium the price of the riskless asset is

S0t = eqt
Pt
P0

(
st
s0

)1/ε

(27)

with the constant q = ρ − 1
2
(1 − ε)σ2

δ . Over the time interval [t, T ] the stock and the

riskless asset include bubble components that satisfy

Bt(T )

St
= H (T − t, st; 2η − 1)

Bt

St
≤ H (T − t, st; 2/ε− 1) =

B0t(T )

S0t

(28)

where we have set

d±(τ, s; a) ≡ log(s)

εσδ
√
τ
± a

2
εσδ
√
τ ,

H(τ, s; a) ≡ N(d+(τ, s; a)) + s−aN(d−(τ, s; a)), (29)

and the function N(x) denotes the cdf of a standard normal random variable.

The above proposition shows that in relative terms, i.e. for each dollar of investment,

the bubble on the riskless asset is larger than that on the stock over any investment

horizon. Since an agent subject to a nonnegative wealth constraint cannot short both

assets, we naturally expect that agent 1 will choose a strategy that exploits the bubble on

the riskless asset because it requires less collateral per unit of initial profit. This intuition

will be confirmed in the Section 4.1 below where we show that the equilibrium strategy

of the unconstrained agent can be seen as the combination of an all equity portfolio and

a short position in the riskless asset bubble.

Comparing the results of Theorem 1 and Proposition 5 reveals that arbitrage activity

has a different effect on the stock and riskless asset bubbles. Indeed, (26) shows that

arbitrage activity impacts the stock bubble both directly through the constant 1−α and

indirectly through the initial value of the constrained agent’s consumption share process,

while (28) shows that only the later channel is at work for the riskless asset bubble.
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Figure 1: Bubbles and credit conditions
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Notes. This figure plots the relative bubbles at horizon T = 100 on the stock (left panel) and

the riskless asset (right panel) as functions of the initial stock holdings of the constrained agent

for different value of the parameter governing the size of the credit facility. To construct this

figure we set σδ = 0.0357, ρ = 0.001 and ε = 0.5.

An immediate consequence of this observation is that while the stock bubble disappears

when arbitrageurs have access to unlimited credit (α → 1⇔ ψ →∞), the riskless asset

bubble is always strictly positive. The reason for this difference is that our formulation

of the wealth constraint gives the arbitrageur a comparative advantage over agent 1 in

exploiting the stock bubble, but not the riskless asset bubble.

Since the right hand side of (18) is increasing and concave in the weighting process,

it follows from Jensen’s inequality and Proposition 4 that st is a supermartingale. This

implies that the consumption share of constrained agents is expected to decline over time

and a direct calculation provided in the appendix shows that we have s∞ = 0 so that

constrained agents, and the bubbles that their presence generates, actually disappear in

the long run. A natural way to correct this behavior and thereby ensure that bubbles

subsist even in the long run is to allow for birth and death of agents of the various kinds in

such a way as to continuously repopulate the group of constrained agents. See Gârleanu

and Panageas (2014) for a recent contribution along these lines.

To illustrate the magnitude of the bubbles and the impact of arbitrage activity we

plot in Figure 1 the relative bubbles on the stock and the riskless asset as functions

of the initial stock holdings of the constrained agent in an economy where agents have
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discount rate ρ = 0.001, the constraint is set at ε = 0.5, and the volatility of the aggregate

consumption is taken to be σδ = 0.0357 as proposed by Basak and Cuoco (1998) to match

the estimates of Mehra and Prescott (1985). As shown by the figure the bubbles can

account for a significant fraction of the equilibrium prices and this fraction decreases both

as the fraction of the market held by constrained agents decreases and as credit conditions

improves. To gain more insight into these properties it is necessary to determine how

arbitrage activity affects the path of the constrained agent’s consumption share and this

is the issue we turn to next.

3.4 Comparative statics

In equilibrium the consumption share of the constrained agent plays the role of an

endogenous state variable. Therefore, to understand the impact of arbitrage activity

we need to understand how the credit facility parameter α influences the path of this

state variable. To state the result, let st(α) denote the constrained agent’s consumption

share seen as a function of time and the credit facility parameter.

Proposition 6. We have

− ns0(α)1+η

s0(α) + nηs0(α)η

(
st(α)

s0(α)

)
≤ ∂st(α)

∂α
≤ 0. (30)

In particular, the consumption share of the constrained agent, the stock price and the

stock bubble are decreasing in arbitrage activity at all dates.

The above result shows that arbitrage activity reduces the consumption share of the

constrained agent at every point in time and, hence, also his welfare. Furthermore, a

direct calculation based on (30) and the definition of the initial value s0(α) shows that

the consumption share of the arbitrageur

s3t(α) =
γ(α)

1 + γ(α)
(1− st(α)) = αs0(α)η

1− st(α)

1− s0(α)

is increasing in the credit facility parameter α at all dates, while the consumption share

of the unconstrained agent

s1t(α) =
1

1 + γ(α)
(1− st(α)) = (1− αs0(α)η − s0(α))

1− st(α)

1− s0(α)
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is decreasing in α at the initial time but non monotone at subsequent dates. The intuition

for these findings is the following. As α increases the consumption share of the constrained

agent decreases so that more consumption becomes available for agents 1 and 3, but the

repartition of that consumption simultaneously tilts towards the arbitrageur as a higher

α improves his comparative advantage over the unconstrained agent. This generates an

initial decrease in the consumption share of the unconstrained agent but this effect may

reverse itself over time depending on the path of the economy.

4 Analysis

4.1 Equilibrium portfolio strategies

Proposition 2 and Theorem 1 allow us to derive in closed-form the trading strategies

employed in equilibrium by each of the three groups of agents.

Proposition 7. Define a strictly positive function by setting

v(s) = v(s;α) ≡ εη

(
αsη

1− αsη

)
. (31)

Then the equilibrium trading strategies of the three agents, and their respective signs, are

explicitly given by

(π1t;φ1t) =

(
1− (1− ε)st

(1 + γ)(1 + v(st))
;
v(st)− (ε+ v(st))st
(1 + γ)(1 + v(st))

)
Pt ∈ R+ × R− (32)

(π2t;φ2t) =

(
1− ε

1 + v(st)
;
ε+ v(st)

1 + v(st)

)
stPt ∈ R2

+

and

(π3t;φ3t) = γ(π1t, φ1t) +

(
εη − 1

1 + v(st)
;−εη + v(st)

1 + v(st)

)
αsηtPt ∈ R± × R−

with the strictly positive constant γ = c30/c10.

Since the portfolio constraint binds at all times in equilibrium (see (22)), agent 2

constantly keeps a strictly positive fraction of his wealth in the riskless asset and the

above proposition shows that this long position in the riskless asset is offset by the

borrowing positions held by the two other agents.

As can be seen from (32) the unconstrained agent 1 uses this borrowing to invest larger

amounts in the stock despite the fact that its price includes a strictly positive bubble.
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To understand this finding recall that agent 1 is required to maintain nonnegative wealth

and, therefore, cannot simultaneously exploit both bubbles. Since by Proposition 5 the

riskless asset bubble requires less collateral per dollar of initial profit we expect this agent

to short the riskless asset bubble and use the stock as collateral. Our next result confirms

this intuition by showing that the wealth of agent 1 is the outcome of a dynamic strategy

that buys the stock and shorts the riskless asset bubble.

Proposition 8. The wealth of agent 1 expressed as a self-financing strategy in the stock

and the riskless asset bubble over the interval (t, T ] is given by

W1t = φS1t(T ) + φB0
1t (T )

where

φS1t(T ) =
εst + (1− Σ0t(T )) (1− st)

(1 + γ) (1 + v(st)− Σ0t(T ))
Pt ≥ 0

φB0
1t (T ) = W1t − φS1t(T ) =

v(st)− (ε+ v(st))st
(1 + γ) (1 + v(st)− Σ0t(T ))

Pt ≤ 0

and the process Σ0t(T ) is the diffusion coefficient of (1/σδ) logB0t(T ).

Turning to the last group of agents, Proposition 7 shows that the equilibrium trading

strategy of the arbitrageur can be decomposed into two parts: A short position of size ψ

in the stock bubble, and a long position in the same strategy as the unconstrained agent.

The short position in the stock bubble is worth Wat ≡ W3t − γW1t = −αsηtPt and an

application of Itô’s lemma shows that this part of the arbitrageur’s equilibrium portfolio

corresponds to a self-financing trading strategy that holds

nat ≡
(ηε− 1)αsηt

1− αsηt (1− ηε)

units of the stock, and invests

φat ≡ Wat − natSt = − ηεαsηtPt
1− αsηt (1− ηε)

≤ 0

in the riskless asset. While the stock position can be either positive or negative, we have

that the position in the riskless asset is negative and decreasing in δt = ρPt. This implies

that, compared to the unconstrained agent, the arbitrageur levers up in good times and

delevers in bad times. This feature of the equilibrium is in line with the evidence in Ang,
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Gorovyy, and Van Inwegen (2011) and leads to an amplification of fundamental shocks

that generates excess volatility and the leverage effect as we now explain.

4.2 Equilibrium volatility

Combining our explicit formula for the equilibrium stock price with the comparative

statics result of Proposition 6 directly leads to the following characterization of the

equilibrium volatility of the stock.

Proposition 9. The equilibrium volatility of the stock is given by

σt = (1 + v(st;α))σδ (33)

where the nonnegative function v(s;α) is defined as in (31). In particular, we have that

the equilibrium volatility of the stock increases with arbitrage activity.

Proposition 9 shows that contrary to existing models with frictions and logarithmic

agents, our model with constrained agents and risky arbitrage activity generates excess

volatility. Furthermore, this excess volatility is self-generated within the system and

therefore provides a new example of the endogenous risks advocated by Danielsson and

Shin (2003), He and Krishnamurthy (2012) and Brunnermeier and Sannikov (In Press)

among others. In our model, excess volatility is explicitly given by

σt − σδ = v(st;α)σδ = ηε

(
αsηt

1− αsηt

)
σδ (34)

and increases with both the constrained agent’s consumption share and the amount α of

arbitrage activity. Since shocks to the consumption share process are negatively correlated

with fundamental shocks this implies that the stock volatility is negatively correlated with

fundamental shocks and it follows that our model is consistent with the leverage effect

(see Black (1976), Schwert (1989), Mele (2007) and Aı̈t Sahalia, Fan, and Li (2013) for

recent evidence) according to which stock volatility tends to increase when prices fall. In

addition, since the equilibrium market price of risk in (19) is also negatively correlated

with fundamental shocks we have that the equity premium

σtθt = σ2
δ (1 + v(st;α))

(
1 +

εst
1− st

)
≥ σ2

δ

is countercyclical which is consistent with the evidence presented by Mehra and Prescott

(1985, 2003) and Fama and French (1989) among others.
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Figure 2: Volatility and credit conditions

0 0.25 0.5 0.75 1

σδ

3σδ

5σδ

7σδ

Consumption share s

V
ol

at
il

it
y
σ

(s
)

ψ = 0

ψ = 1

ψ = 2

ψ = 4

Notes. This figure plots the equilibrium stock volatility as a function of the consumption share

of the constrained agent for various values of the parameter that governs the size of the credit

facility. To construct the figure we set σδ = 0.0357, ρ = 0.001 and ε = 0.5.

To illustrate the amount of excess volatility that our model generates we plot in

Figure 2 the volatility of the stock as a function of the consumption share of constrained

agents for different values of the parameter ψ = α/(1 − α) that governs the size of the

credit facility. As shown by the figure the amplification of fundamental shocks induced by

arbitrage activity is sizable and increases with both the consumption share of constrained

agents and the amount of arbitrage activity. For example, with 80% of constrained agents

the stock volatility varies between 1.5 and 2.03 times that of the underlying dividend

depending on the size of the credit facility.

As can be seen from (34) the model generates excess volatility if and only if there

is arbitrage activity in that α > 0. Therefore, intuition suggests that the source of the

excess volatility lies in what arbitrageurs do in response to fundamental shocks, and more

precisely in the short stock bubble position that their preferential access to credit allows

them to implement. To confirm this intuition recall from the previous section that this

position requires the arbitrageur to borrow

|φat| = |Wat − natSt| =
ηεαsηt δt

ρ(1− αsηt (1− ηε))
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from the constrained agent, and assume that the economy suffers a negative fundamental

shock so that the dividend decreases. As in the model without arbitrageurs (see for

example Hugonnier (2012)) this triggers a relative decrease of the same magnitude in the

price of the stock. However, since φat is negative and decreasing in δt = ρPt we have that

this decrease in δt prompts the arbitrageur to delever. This puts additional downward

pressure on the stock compared to the case without arbitrage activity and leads to a

larger total decrease of the stock price. Symmetrically, the arbitrageur tends to lever

up his position in reaction to positive fundamental shocks. This puts additional upward

pressure on the price and, therefore, amplifies the effect of the shock compared to the

case without arbitrage activity. Since

∂2|φat|
∂δt∂st

=
εαη2s1+η

t

ρ(1− αsηt (1− ηε))2
≥ 0

we have that the magnitude of the amplification increases with the consumption share

of the constrained agent. This property explains the convexity of the stock volatility

function that is apparent from (33) and is quite intuitive as we know from Section 3.3

that the size of the stock bubble, and hence also the influence of the arbitrageur, increases

with the consumption share of the constrained agent.

5 Conclusion

In this paper we derive a novel and analytically tractable equilibrium model of dynamic

arbitrage. Specifically, we consider an economy populated by three groups of agents:

Constrained agents who are subject to a portfolio constraint that tilts their demand

toward the riskless asset, unconstrained agents who are only subject to a nonnegativity

constraint on wealth, and arbitrageurs who have no initial wealth but have access to an

credit facility that allows them to weather transitory losses.

We show that the presence of constrained agents in the economy gives rise to risky

arbitrage opportunities in the form of asset pricing bubbles, and that these bubbles make

the credit facility valuable by allowing arbitrageurs to consume despite the fact that they

initially hold no wealth. We solve for the equilibrium in closed-form and show that it is

characterized by bubbles on both traded assets, a time varying price-dividend ratio and

a sizable countercyclical excess volatility component.
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A Alternative credit facility

In this appendix we show that our results remain qualitatively unchanged if we replace the

stock by the riskless asset in the wealth constraint (4) of the arbitrageur. Specifically, we fix a

constant ` ≥ 0 and assume that the arbitrageur is subject to

W3t + `S0t ≥ 0, t ≥ 0. (A.1)

Proceeding as in the baseline model, we obtain the following characterization of the feasible

consumption set for the arbitrageur.

Proposition A.1. A consumption plan is feasible for agent 3 if and only if

E

[∫ ∞
0

ξtc3tdt

]
≤ `

(
1− lim

T→∞
E[ξTS0T ]

)
.

In particular, the feasible set of agent 3 is non empty if and only if the price of the riskless asset

includes a bubble over some horizon.

Going through the same steps as in Section 3 we deduce that the state price density and the

optimal consumptions of agents 1 and 2 are given by (15), (16) and (17) where the consumption

share evolves according to (21). Itô’s lemma then shows that the market price of risk and the

interest rate are given by (19) and (20), and it follows that over an interval [t, T ] the price of

the riskless asset includes a bubble that is given by

B0t(T ) = S0t

(
1− Et

[
ξTS0T

ξtS0t

])
= S0tH(T − t, st, 2/ε− 1) > 0. (A.2)

In particular we have that limT→∞E[ξTS0T ] = 0 and it thus follows from the same arguments

as in the proof of Proposition 2 that the optimal consumption of the arbitrageur is given by

c3t = ρ(W3t + `S0t). Combining this identity with Proposition 5 and the market clearing

conditions then shows that

St =
δt
ρ
− `S0t = Pt

[
1− eqt `

P0

(
st
s0

)1/ε
]

(A.3)

and it now remains to prove that, under appropriate parametric assumptions, the initial value

of the consumption share process can be chosen in such a way that the agents consumption and

the stock price are positive at all dates.

Theorem A.2. Denote by x̂ ∈ (0, 1) the unique solution to x̂ε = n(1− x̂) and let q be defined

as in Proposition 5.

a) If q > 0 and ` ≥ x̂P0 then no equilibrium exists.
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b) If q ≤ 0 and 0 ≤ ` < x̂P0 then there exists a unique equilibrium in which the price of the

traded securities are given by (27) and (A.3) where the consumption share process evolves

according to (21) with initial value s0 = n(1− `/P0).

The first part shows that the equilibrium fails to exists whenever agents are sufficiently impatient

and the credit limit exceeds a threshold that depends positively on the initial endowment of the

constrained agent and the initial size of the economy as measured by P0. The intuition is clear:

If ` is too large relative to P0 then the consumption c3t − ρW3t generated by the arbitrageur’s

profits exceeds the available stock of the consumption good which leads the stock price in (A.3)

to take negative values that are incompatible with limited liability.

Our next result shows that in equilibrium the stock price includes a bubble that is dominated

in relative terms by the riskless asset bubble over any horizon.

Corollary A.3. Under the conditions of Theorem A.2.b) the equilibrium price of the stock

includes a bubble component that satisfies

0 ≤ Bt(T ) = sηtPtH(T − t; st; 2η − 1)− `B0t(T ) ≤ St
S0t

B0t(T )

with η > 1 and the function H(τ ; s; a) as in Proposition 5.

Comparing Theorem A.2 and Corollary A.3 to the results of Sections 3 and 4 shows that the

asset pricing implications of (A.1) are qualitatively similar to those of our main model. First,

the equilibrium includes bubbles that allow arbitrageurs to consume despite the fact that they

hold no initial capital. Second, arbitrage activity has a negative impact on the stock price and

the bubbles on both assets. It follows that arbitrage activity reduces mispricing but we can no

longer show that arbitrageurs are eradicate the stock bubble in the limit of infinite credit since

equilibrium fails to exist for large values of `. Third, the price/dividend ratio is time varying

and the equilibrium stock volatility

σ(st(`)) = σδ

[
1− eqt `

P0

(
st(`)

s0(`)

)1/ε
]−1

≥ σδ

is increasing in the size of the credit limit, decreasing in the consumption share of constrained

agents and negatively correlated with fundamental shocks so that arbitrage activity generates

both excess volatility and the leverage effect.

B Proofs

Proof of Proposition 1. The static budget constraint for agent 1 is well-known and follows

from Lemma B.1 below by letting bt = Πt = 0. On the other hand, the static budget constraint
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for the arbitrageur is novel and follows from Lemma B.1 below by letting bt = ψδt, Πt = ψSt

and using the assumption that limT→∞E[ξTΠT ] = 0. �

Consider an asset with dividend rate bt ≥ 0 and price process

Πt = Π0 +

∫ t

0
(rsΠs + ΣΠ

s θs − bs)ds+

∫ t

0
ΣΠ
s dZs ≥ 0

for some diffusion coefficient ΣΠ
t such that the above integrals are well-defined. In order to

simultaneously cover the models of Section 2 and Appendix A consider an agent who is subject

to the transversality condition (5) and the wealth constraint

W0 = 0 ≤Wt + Πt, t ≥ 0. (B.1)

The following lemma provides a static characterization of the feasible set associated with these

constraints and implies the results of Propositions 1 and A.1.

Lemma B.1. A consumption plan ct is feasible if and only if

E

[∫ ∞
0

ξscsds

]
≤ Π0 − lim

T→∞
E

[
ξTΠT +

∫ T

0
ξsbsds

]
. (B.2)

In particular, the feasible set of the arbitrageur is non empty if and only if Πt includes a strictly

positive bubble component.

Proof. Assume that ct is feasible and let Wt satisfying (5) and (B.1) denote the corresponding

wealth process. An application of Itô’s lemma shows that

ξt(Wt + Πt) +

∫ t

0
ξs(cs + bs)ds

is a nonnegative local martingale and therefore a supermartingale. Using this property together

with (B.1) the monotone convergence theorem then gives

E

[∫ ∞
0

ξscsds

]
= lim

T→∞
E

[∫ T

0
ξscsds

]
≤ lim

T→∞

(
Π0 − E

[
ξT (WT + ΠT ) +

∫ T

0
ξsbsds

])
≤ Π0 − lim inf

T→∞
E [ξTWT ]− lim inf

T→∞
E

[
ξTΠT +

∫ T

0
ξsbsds

]
≤ Π0 − lim

T→∞
E

[
ξTΠT +

∫ T

0
ξsbsds

]
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where the last inequality follows from the fact that since

Yt = ξtΠt +

∫ t

0
ξsbsds = Π0 +

∫ t

0
ξs(Σ

Π
s −Πsθs)dZs

is a nonnegative local martingale the function T 7→ E[YT ] ≤ Y0 is decreasing and hence admits

a well-defined limit. Conversely, assume that the consumption plan ct satisfies (B.2) with

an equality. Since Yt ≥ 0 is a local martingale it follows from Fatou’s lemma and Doob’s

supermartingale convergence theorem that the limit

L = lim
T→∞

ξTΠT = lim
T→∞

YT −
∫ ∞

0
ξsbsds

is well-defined and nonnegative. Now consider the process

Wt = −Πt +
1

ξt
Et

[∫ ∞
t

ξs(cs + bs)ds+ aL

]
where the nonnegative constant a is defined by a = 0 if the random variable L is almost surely

equal to zero and by

a = lim
T→∞

E[ξTΠT ]

E[L]
∈ (1,∞)

otherwise. The martingale representation theorem, Itô’s lemma and the definition of a imply

that Wt is the wealth process of a self-financing strategy that starts from no initial capital and

consumes at rate ct + bt. On the other hand, it is clear from the definition that (B.1) holds and

using the definition of a and the monotone convergence theorem we deduce that

lim inf
T→∞

E[ξTWT ] = − lim
T→∞

E[ξTΠT ] + aE[L] = 0

and the proof is complete. �

Proof of Proposition 2. The optimal strategy of the unconstrained agent follows from well

known results, see for example Duffie (2001, Chapter 9.E) and Karatzas and Shreve (1998,

Chapter 3). Letting pt = πt/W2t denote the proportion of wealth that agent 2 invests in the

stock we have that the portfolio constraint can be written as

pt ∈ {p ∈ R : |σtp| ≤ (1− ε)σδ}

and the optimal strategy of the constrained agent now follows from Cvitanić and Karatzas (1992,

Section 11). Let us now turn to the optimal strategy of the arbitrageur. Using Proposition 1
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we have that his optimization problem can be formulated as

max
c≥0

E

[∫ ∞
0

e−ρs log csds

]
subject to E

[∫ ∞
0

ξscsds

]
≤ ψB0.

Using the concavity of the utility function together with the same arguments as in the second

part of the proof of Lemma B.1 we have that the solution to this problem and the corresponding

wealth process are explicitly given by c3t = (y3e
ρtξt)

−1 and

W3t + ψBt =
1

ξt
Et

[∫ ∞
t

ξsc3sds

]
=
c3t

ρ
= e−ρt

ψB0

ξt
.

for some Lagrange multiplier y3 > 0 that is determined in such a way that W30 = 0. This shows

that (11) holds for the arbitrageur. On the other hand, applying Itô’s lemma to the right hand

side of the above expression and using the fact that

Bt = B0 +

∫ t

0

(
rsBsds+ ΣB

s (dZs + θsds)
)

we deduce that the optimal wealth process evolves according to

W3t =

∫ t

0

(
(rsW3s − c3s)ds+

(
(W3s + ψBs)θs − ψΣB

s

)
(dZs + θsds)

)
and the desired result now follows by comparing this expression to (3). �

Proof of Proposition 3. To determine the dynamics of the consumption share, assume that

dst = mtdt + ktdZt for some drift mt and volatility kt. Applying Itô’s lemma to (6) and (15)

and comparing the results shows that

θt = σδ −
kt

1− st
, (B.3)

rt = ρ+ µδ − σ2
δ +

σδkt −mt

1− st
−
(

kt
1− st

)2

. (B.4)

On the other hand, Proposition 2 shows that along the optimal path W2t = stδt/ρ. Applying

Itô’s lemma to this expression, and matching terms with the dynamic budget constraint (3),

shows that the drift and volatility of the consumption share process are related by

mt +
k2
t

1− st
= 0, (B.5)

σtπ2t = W2t

(
σδ +

kt
st

)
. (B.6)
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Substituting (B.3) risk into (12) and comparing the result with (B.6) then shows that

σδ =
kt

1− st
+

(
σδ +

kt
st

)
max

{
1;
|σδ(1− st)− kt|
(1− ε)(1− st)σδ

}
. (B.7)

Solving (B.5) and (B.7) gives the drift and volatility of the consumption share in (21) and the

remaining claims follow by substituting these coefficients into (B.3) and (B.4). �

Lemma B.2. We have

qt(T ) =

∫ T

t
ρe−ρ(u−t)λt − Et[λu]

1 + γ + λt
du = sηtH(τ, st; 2η − 1)− e−ρτstH(τ, st, 1) (B.8)

where τ = T − t and the function H(τ, s, a) is defined as in (29).

Proof. See Hugonnier (2012, Lemma A.3). �

Lemma B.3. Let a ∈ R be a constant. Then the stochastic differential equation

Yt(a) = 1−
∫ t

0
Yu(a)

(
a+

su
1− su

)
εσδdZu (B.9)

admits a unique strictly positive solution which satisfies

Et [Yt+T (a)] = Yt(a) (1−H(T, st; 2a− 1))

where the function H(τ, s, a) is defined as in (29). In particular, the process Yt(a) is a strictly

positive local martingale but not a martingale.

Proof. Itô’s lemma and (21) show that the process Λt = st/(1 − st) evolves according to the

driftless stochastic differential equation

dΛt = −Λt (1 + Λt) εσδdZt

and the results follow from Hugonnier (2012, Lemma A.5). �

Proof of Proposition 4. By application of Itô’s lemma we have that the weighting process

evolves according to

dλt = −λt(1 + γ + λt)
εσδ

1 + γ
dZt = −λt(1 + Λt)εσδdZt.

Therefore the uniqueness of the solution to (B.9) implies that λt = Yt(1) and the desired result

now follows from Lemma B.3. �
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Proof of Theorem 1. Combining (24) with the monotone convergence theorem shows that

the bubble on the stock satisfies

Bt
(1− α)Pt

=
ρ

1 + γ + λt
Et

[∫ ∞
t

e−ρ(u−t) (λt − λu) du

]
= lim

T→∞

ρ

1 + γ + λt
Et

[∫ T

t
e−ρ(u−t) (λt − λu) du

]
= lim

T→∞
qt(T )

Taking the limit in (B.8) then gives (26) and substituting the result in (23) produces the formula

for the stock price. Furthermore, the fact that αsηT ≤ 1 and the supermartingale property of

the weighting process implies that we have

E[ξTST ] =
e−ρTP0

1 + γ + λ0
E[(1 + γ + λT )(1− αsηT )] ≤ e−ρTP0

and since ρ > 0 it follows that the assumption of Propositions 1 and 2 hold. To establish the

existence and uniqueness of the equilibrium it suffices to show that whenever n ∈ (0, 1] and

α > 0 there are unique constants s0 ∈ (0, 1) and γ > 0 such that

w2 = n(1− αsη0)P0 = s0P0,

w1 = (1− n)(1− αsη0)P0 =
1

1 + γ
(1− s0)P0.

A direct calculation shows that the pair (s0, γ) ∈ (0, 1)× (0,∞) is a solution to this system of

equations if and only if

g(s0) ≡ n(1− αsη0)− s0 = 0 and γ = γ(s0) ≡ n− s0

s0(1− n)
.

Since the function g(s) is continuous and strictly decreasing with g(0) = n and g(n) < 0 we

have that the nonlinear equation g(s0) = 0 admits a unique solution s0 that lies in the open

interval (0, n) and it follows that the constant γ(s0) is strictly positive. �

Proof of Proposition 5. Applying Itô’s lemma to the right hand side of (27) and using (21)

we obtain that

eqt
Pt
P0

(
st
s0

)1/ε

= 1 +

∫ t

0
equ

Pu
P0

(
su
s0

)1/ε [
ρ+ µδ − σ2

δ

(
1 +

εsu
1− su

)]
du
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and the formula for the riskless asset price now follows from (1) and (20). Let us now turn to

the finite horizon bubbles. Using (8) and the law of iterated expectations we obtain

Bt(T ) = St − Et
[∫ T

t
ξt,uδudu+ ξt,TST

]
= St − Et

[∫ ∞
t

ξt,uδudu−
∫ ∞
T

ξt,uδudu+ ξt,TST

]
= Bt − Et

[
ξt,T

(
ST − ET

∫ ∞
T

ξT,uδudu

)]
= Bt − Et [ξt,TBT ] .

To compute the term on the right hand side we start by observing that due to (B.8) and the

monotone convergence theorem we have

sηu = lim
Θ→∞

qu(Θ) = Eu

[∫ ∞
u

ρe−ρ(k−u) λu − λk
1 + γ + λu

dk

]
, u ≥ 0.

Using this identity in conjunction with Lemmas B.2 and B.3, the definition of the equilibrium

state price density and (18) then gives

Bt − Et[ξt,TBT ]

(1− α)Pt
= sηt − e−ρ(T−t)Et

[
1 + γ + λT
1 + γ + λt

sηT

]
= sηt − ρEt

[∫ ∞
T

e−ρ(u−t) λT − λu
1 + γ + λt

du

]
= sηt + qt(T )− lim

Θ→∞
qt(Θ)− e−ρ(T−t)Et

[
λT − λt

1 + γ + λt

]
= sηtH(T − t, st, 2η − 1)

and the formula of the statement now follows from (26). On the other hand, using (9) we have

that the finite horizon bubble on the riskless asset is given by

B0t(T ) = S0t

(
1− Et

[
ξTS0T

ξtS0t

])
.

Since the process Mt = ξtS0t evolves according to

Mt = 1−
∫ t

0
MsθsdZs = 1−

∫ t

0
Ms(1/ε+Xs)εσδdZs

we have that Mt = Yt(1/ε) by the uniqueness of the solution to (B.9) and the formula of the

statement now follows from Lemma B.3. To complete the proof it remains to show that the

relative bubble on the stock is dominated by the relative bubble on the riskless asset over any

horizon. Consider the function defined by

G(τ ; s; a) = s
1+a
2 H(τ, s; a).
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A direct calculation using (29) shows that

∂

∂a
(G(τ ; s; a)) = s

1−a
2 log(s)G0(s)

∂

∂a
(s−aG(τ ; s; 2a− 1)) = 2s1−2a log(1/s)N(d−(τ ; s; 2a− 1)) ≥ 0

with the function defined by

G0(s) = [saN(d+(τ ; s; a))−N(d−(τ ; s; a))]/2,

and since

G0(0) = 0 < N(d+(τ ; 1, a))− 1/2 = G0(1)

G′0(s) = (a/2)xb−1N(d+(τ ; s, a)) ≥ 0

we conclude that the functions G(τ ; s, a) and s−aG(τ ; s, 2a− 1) are respectively decreasing and

increasing in a. Using these properties together with the first part of the proof and the facts

that st ∈ (0, 1), η > 1 and ε ∈ [0, 1] we then deduce that

Bt(t+ T )/St = G(T, st, 2η − 1)/(1 + ψ(1− sηt )) ≤ G(T, st, 2η − 1)

≤ G(T, st, 1) ≤ s−1
t G(T, st, 1) ≤ s−1/ε

t G(T, st, 2/ε− 1) = B0t(t+ T )/S0t

and the proof is complete. �

Asymptotic behaviour of the consumption share process. Since the consumption share

process is a nonnegative supermartingale we have that it converges to a well-defined limit. On

the other hand, an application of Itô’s lemma to (21) shows that

0 ≤ st = s0e
−

∫ t
0

(εσδ)
2

1−su
du− 1

2
(εσδ)

2t−εσδZt ≤ st = s0e
− 1

2
(εσδ)

2t−εσδZt

and the desired result then follows from the fact that, by well-known results on geometric

brownian motion, the process st converges to zero. �

Proof of Proposition 6. By Protter (2004, Theorem 39 p. 305) we have that the first order

derivative ∇t(α) = ∂st(α)
∂s0(α) of the consumption share process with respect to its initial value

exists and satisfies

∇t(α) = 1 +

∫ t

0
∇u(α)

[
dsu(α)

su(α)
− su(α)(εσδ)

2

(1− su(α))2
du

]
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Solving this linear stochastic differential equation and using the fact that the consumption share

is nonnegative then shows that

∇t(α) ≤ exp

(
−
∫ t

0

su(α)(εσδ)
2

(1− su(α))2
du

)
st(α)

s0(α)
≤ st(α)

s0(α)
.

On the other hand, using the chain rule we deduce that ∂st(α)
∂α = ∇t(α)∂s0(α)

∂α and the desired

result now from the fact that

s0(α) = n(1− αs0(α)η) =⇒ −∂s0(α)

∂α
=

ns0(α)1+η

s0(α) + nηs0(α)η

by application of the implicit function theorem. �

Proof of Proposition 7. Let σt denote the stock volatility. By Proposition 3 and Theorem 1

we have that along the equilibrium path agents’ wealth are given by

W2t = stPt

W1t =
(1− st)Pt

1 + γ
and W3t = St −W1t −W2t = γW1t − αsηtPt

and the expression for the equilibrium trading strategies reported in the statement now follows

by noting that we have

πit =
1

σt

[
∂Wit

∂Pt
Ptσδ −

∂Wit

∂st
stεσδ

]
and φit = Wit− πit as a result of (3), (21) and Itô’s lemma. The signs of π1t, π2t and φ2t follow

from the expressions in the statement. To establish the sign of φ1t we argue as follows. Using

the fact that v(s) ≥ 0 is nonnegative we deduce that

sign [φ1t] = sign [v(s)− s(ε+ v(s))] = sign
[
−1 + αsη−1(s+ η(1− s))

]
.

Denote by h(s) the continuous function inside the bracket. Since η > 1 we have that this

function is increasing with h(0) = −1 and h(1) = α−1 and the result now follows by continuity.

Finally, since −φat = γφ1t − φ3t ≥ 0 we have that φ3t ≤ 0 and the proof is complete. �

Proof of Proposition 8. To establish the desired result we have to find a pair of adapted

processes such that

W1t =
1

1 + γ
(1− st)Pt = φS1t(T ) + φB0

1t (T )
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and

dW1t = φS1t(T )

(
dSt
St

+
δt
St
dt

)
+ φB0

1t (T )
dB0t(T )

B0t(T )
− ρW1tdt

where St denotes the equilibrium stock price and B0t(T ) denotes the bubble on the riskless asset

at horizon T . Expanding the dynamics of these two processes and using (3) shows that these

equations are equivalent to

φB0
1t (T ) + φS1t(T ) = W1t

φB0
1t (T )Σ0t(T ) + φS1t(T )(1 + v(st)) = π1t(1 + v(st))

and solving this system gives the desired decomposition. The sign of the riskless asset bubble

position follows by noting that signφB0
1t (T ) = signφ1t. To establish the sign of the position in

the stock and complete the proof it suffices to show that Σ0t(T ) ≤ 0 or, equivalently, that the

function H(τ, s; a) is increasing in s. Differentiating in (29) shows that

s1+a∂H

∂s
(τ, s; a) = aN(d−(τ, s; a)) +

2

εσδ
√
τ
N ′(d−(τ, s; a))

and the required result now follows by noting that the function on the right hand side is

increasing on [0, 1] and equal to zero at zero. �

Proof of Proposition 9. The expression for the stock volatility follows from (25) and Itô’s

lemma. To establish the second part we differentiate with respect to α. This gives

∂σt(α)

∂α
=

εηsηt (α)

(1− αsηt (α))2

[
1 +

αη

st(α)

∂st(α)

∂α

]
and the desired result now follows from the derivative bound of Proposition 6. �

Proof of Proposition A.1. The desired result follows from that of Lemma B.1 by taking

bt = 0 and Πt = `S0t. We omit the details. �

Proof of Theorem A.2. Since individual optimality and market clearing are already taken

into account we have that the existence of an equilibrium is equivalent to the existence of a pair

(s0, γ) ∈ (0, 1)× (0,∞) such that

w1 = n (P0 − `) = s0P0 (B.10)

w2 = (1− n) (P0 − `) =
(1− s0)P0

1 + γ
(B.11)

and P [{t : St > 0}] = 1 where the candidate equilibrium price process is defined as in (A.3).

The unique solution to the system (B.10), (B.11) satisfies s0 = n(1 − `/P0) and and it follows
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that ` < P0 is necessary for the existence of an equilibrium. Assume that this condition is

satisfied and consider the non existence result. If q > 0 then we have

St
Pt

= 1− eqt `
P0

(
st
s0

)1/ε

≤ 1− `

P0

(
st
s0

)1/ε

and it follows that

P [{t : St ≤ 0}] ≥ P

[{
t : st ≥ b ≡ s0

(
`

P0

)−ε}]

If we have ` ≥ x̂P0 then b ∈ (0, 1) and the proof will be complete once we show that the

probability on the right hand side is strictly positive. A direct calculation using (21) shows that

a scale function for the consumption share process is given by p(x) = (2x − 1)/(4(1 − x)) and

the result now follows from Karatzas and Shreve (1991, Proposition 5.22). Let us now turn to

the existence result. If q ≤ 0 < x̂P0 − ` then the definition of x̂ implies that

St
Pt

= 1− eqt `
P0

(
st
s0

)1/ε

≥ 1− `

P0

(
1

s0

)1/ε

> 0 (B.12)

and the desired result now follows from the fact that the aggregate dividend process is strictly

positive at all times. �

Proof of Corollary A.3. Since the state price density is the same as in the basic model we

have that the fundamental value of the stock is Ft = (1− sηt )Pt and it thus follows from (A.3)

that the infinite horizon bubble on the stock is given by

Bt = St − (1− sηt )Pt = sηtPt − `S0t = Pt

[
sηt − eqt

`

P0

(
st
s0

)1/ε
]
.

Under the conditions of Theorem A.2.b) we have that η ≤ 1/ε and it thus follows from the

second inequality in (B.12) that

Bt = s−ηt Pt

[
1− eqts1/ε−η

t

`

P0

(
1

s0

)1/ε
]
≥ s−ηt Pt

[
1− `

P0

(
1

s0

)1/ε
]
> 0.
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Using the above identities in conjunction with (A.2), (A.3), the fact that st ≤ 1 ≤ η ≤ 1/ε and

the monotonicity of G(τ ; s; a) in the proof of Proposition 5 we obtain that

Bt(t+ T ) = Bt − Et[ξt,TBT ] = sηtPt − Et[ξt,T s
η
TPT ]− `(S0t − Et[ξt,TS0T ])

= sηtPtH(T − t; st, 2η − 1)− `B0t(T )

= sηtPtH(T − t; st, 2η − 1)− `S0tH(T − t; st, 2/ε− 1)

= StH(T − t, st, 2/ε− 1) + Pt (sηtH(T − t; st, 2η − 1)−H(T − t; st, 2/ε− 1))

≤ StH(T − t, st, 2/ε− 1) + Pt (G(T − t; st, 2η − 1)−G(T − t; st, 2/ε− 1))

≤ StH (T − t, st, 2/ε− 1)

and the desired result now follows (A.2). �
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Gârleanu, N., Panageas, S., 2014. Young, old, conservative and bold: The implications of

heterogeneity and finite lives for asset pricing. Forthcoming: Journal of Political Economy.
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