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Abstract

Distributed Constraint Optimization (DCOP) is a framework in which
multiple agents with private constraints (or preferences) cooperate to
achieve a common goal optimally. DCOPs are applicable in several multi-
agent coordination/allocation problems, such as vehicle routing, radio
frequency assignments, and distributed scheduling of meetings. However,
optimization scenarios may involve multiple agents wanting to protect
their preferences’ privacy. Researchers propose privacy-preserving algo-
rithms for DCOPs that provide improved privacy protection through
cryptographic primitives such as partial homomorphic encryption, secret-
sharing, and secure multiparty computation. These privacy benefits come
at the expense of high computational complexity. Moreover, such an
approach does not constitute a rigorous privacy guarantee for optimiza-
tion outcomes, as the result of the computation may compromise agents’
preferences. In this work, we show how to achieve privacy, specifically
Differential Privacy, by randomizing the solving process. In particular,
we present P-Gibbs, which adapts the current state-of-the-art algorithm
for DCOPs, namely SD-Gibbs, to obtain differential privacy guarantees
with much higher computational efficiency. Experiments on benchmark
problems such as Ising, graph-coloring, and meeting-scheduling show
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P-Gibbs’ privacy and performance trade-off for varying privacy bud-
gets and the SD-Gibbs algorithm. More concretely, we empirically show
that P-Gibbs provides fair solutions for competitive privacy budgets.

Keywords: Distributed Constrained Optimization, Differential Privacy

1 Introduction

The idea of distributed computation has been a trending topic among computer
scientists for decades. Distributing the computation has several well-known
advantages over centralized computing. These include no single-point failure,
incremental growth, reliability, open system, parallel computing, and easier
management of resources. In this paper, we focus on the distributed analogue
of constrained optimization [1], namely distributed constraint optimization
problem (DCOP), first introduced in [2].

DCOP is a problem where agents collectively compute their value assign-
ments to maximize (or minimize) the sum of resulting constraint rewards. In
DCOP, constraints quantify each agent’s preference for each possible assign-
ment. DCOPs help model various multi-agent coordination and resource
allocation problems like distributed scheduling of meetings and graph-coloring
related applications such as mobile radio frequency assignments. For instance,
consider the problem of meeting-scheduling in which several Chief Executive
Officers (CEOs) aim to decide a date and time to meet. Each CEO will have
a constraint for each date and time slot assignment, quantifying its preference
for the assignment. The preferences may depend on the CEOs’ availability
and favorable slots. In this scenario, the CEOs cannot directly employ a cen-
tralized coordinator to decide on an agreeable meeting slot. The coordinator
will require information regarding the CEOs’ availability – which is often sen-
sitive. Alternatively, the CEOs can generate a suitable schedule by modeling
the problem as a DCOP and using any DCOP-solving algorithms. However,
researchers show that despite their distributed nature, DCOP algorithms may
themselves leak sensitive information [3].

1.1 Privacy in DCOPs

In general, the need to preserve the privacy of an agent’s sensitive informa-
tion in AI/ML solutions is paramount [4–6]. Despite its distributed nature,
‘solving’ a DCOP instance transfers information across agents, which may
leak sensitive information to the other participants, such as the agent’s prefer-
ences. In the above example, an information leak may involve a CEO inferring
critical information about the other participating CEOs during the informa-
tion exchange. Thus, privacy-preserving solutions to DCOPs are necessary and
form the basis of this work. Before discussing the existing privacy-preserving
DCOP literature, we first summarize the existing DCOP algorithms.



Springer Nature 2021 LATEX template

Differentially Private Multi-Agent Constraint Optimization 3

DCOP Algorithms

Solving a DCOP instance is NP-hard [7]. Nevertheless, the field has grown
steadily over the years, with several algorithms being introduced to solve
DCOP instances, each providing some improvement over the previous.
These algorithms are either: (1) search-based algorithms like SynchBB [8],
ADOPT [7] and its variants, AFB [9] and MGM [10], where the agents
enumerate through sequences of assignments in a decentralized manner; (2)
inference-based algorithms like DPOP [11] and Max-Sum [12], where the
agents use dynamic programming to propagate aggregated information to
other agents; (3) sampling-based algorithms like DUCT [13, 14], where the
agents iteratively sample promising assignments. We refer the reader to [15]
for a comprehensive survey on DCOP algorithms.

This paper focuses on SD-Gibbs (and its parallel analog PD-Gibbs) [16],
the current state-of-the-art algorithms for approximately solving DCOPs.
SD-Gibbs is known to run faster (e.g., compared to DUCT [16]), find a bet-
ter quality of solutions (e.g., compared to MGM and DUCT [14]), and be
applicable for larger problems (e.g., compared to DPOP [14] and DUCT [16]).

1.1.1 Privacy-preserving DCOP Algorithms

In literature, several algorithms exist to preserve privacy in DCOPs. Unfortu-
nately, we identify that such existing privacy-preserving algorithms have two
significant drawbacks. Firstly, these algorithms lack scalability with respect to
the number of agents and constraints. Secondly, privacy-preserving complete
algorithms for DCOPs converge at the optimal solution. As such, the said solu-
tion may be used to infer potentially critical information regarding the DCOP
instance. We next discuss these drawbacks in detail.

Non-scalability of Private DCOPs

As DCOPs are NP-hard, complete DCOP algorithms such as DPOP do
not scale as it is. The added complexity of the underlying cryptographic
primitives further hits the scalability of its privacy variants: P-DPOP [3],
P3/2-DPOP [17], and P2-DPOP [17]. Of these, P-DPOP scales the best, pri-
marily due to its weaker privacy guarantees. Even for P-DPOP, the algorithm
is known to only scale up to 12 agents for graph-coloring, and 6 agents for
meeting-scheduling – two popular benchmark problems in DCOP literature.

On the other hand, more recent algorithms like P-Max-Sum [18] and
P-SyncBB [19] scale better, either in part to the underlying approximate
algorithm (P-Max-Sum) or efficient secure multi-party computation protocols
(P-SyncBB). However, the algorithms are still computationally intensive. For
instance, P-Max-Sum requires a computational overhead ranging from min-
utes to an hour. Also, the algorithm’s run-time increases by a factor of 1000s
over its non-private variant [18].
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Solution Privacy

In addition to their lack of scalability, privacy-preserving DCOP algorithms
built atop complete algorithms output the optimal assignment (or solution).
However, these final assignments cannot be private and, in turn, may leak
critical information about agents’ preferences [3]. We refer to this information
leak as solution privacy. For complete DCOP algorithms such as DPOP, their
privacy variants built through cryptographic primitives such as P-DPOP [3],
P 3/2-DPOP [17], and P 2-DPOP [17] trivially do not satisfy solution privacy.

1.2 Our Goal and Approach

In summary, we note that while algorithms exist that realize constraint privacy,
their non-scalability hinders their practical use. The cryptographic primitives
used to achieve privacy further exaggerate this lack of scalability. Moreover,
information leaked through the algorithms’ output can be used to extract sig-
nificant private information, especially when the problem is solved repeatedly.
Motivated by these, we aim to construct a scalable DCOP algorithm while
providing rigorous and provable privacy guarantees for agents’ constraints and
one that satisfies solution privacy.

Note that the non-guarantee of solution privacy is an inevitable outcome of
a cryptographically secure algorithm. However, it is possible to make the final
assignment of a DCOP algorithm differentially private [20]. Consequently, to
achieve such a private and scalable algorithm, we focus on the strong notion of
differential privacy (DP) [20, 21]. In particular, we focus on achieving privacy
in SD-Gibbs using DP techniques. Furthermore, we consider a stronger local
model of privacy [21], which ensures the indistinguishability of any two agents.

Our Approach and Contributions

Differential privacy (DP) is usually achieved through randomization. This
makes it natural to consider randomized algorithms, such as SD-Gibbs [16],
which also, at the same time, are much more computationally efficient. How-
ever, these algorithms by themselves do not protect privacy, and we develop
additional mechanisms to ensure DP of the entire process. More concretely,
we consider the following approach to design a scalable DCOP that preserves
constraint privacy.

Identifying Privacy Leaks in SD-Gibbs. We first show that SD-Gibbs may leak
information about agent constraints during execution. More concretely, during
the algorithm’s execution, agents send and receive information that directly
depends on their utility functions, i.e., functions that quantify the preferences
for each constraint. What is more, SD-Gibbs’ iterative nature may further lead
to a high privacy loss over the iterations.

As such, we are required to construct an algorithm that not only preserves
constraint privacy but one which incurs minor privacy leaks across iterations.
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P-Gibbs. Towards this, we develop a new differentially private variant of SD-
Gibbs. We present a novel algorithm P-Gibbs: which crucially differs from
SD-Gibbs in three key aspects with respect to preserving constraint privacy.
1. Sampling through Soft-max with Temperature. Sampling through Gibbs

distribution [22] in SD-Gibbs leaks information about the underlying util-
ities. This leak is because a value with greater utility is more likely to
be sampled. To overcome this, we use soft-max with temperature over the
Gibbs distribution. This process smooths out sampling distributions in
SD-Gibbs.

2. Adding Gaussian Noise to Relative Utilities. Each agent in SD-Gibbs
sends its relative utility to its immediate parent. These relative utilities
are the difference between its previous assignment and its current one. As
such, these values leak vital information about the utilities. E.g., if a par-
ticular assignment has a high utility for agent j, but low for others (and
it is known), an intermediate agent will learn about agent j even from
the aggregated utility. To this end, we add Gaussian noise to the relative
utility in our algorithm. The added noise helps to perturb each agent’s
relative utilities such that information regarding the utilities is protected.

3. Subsampling. As aforementioned, the iterative nature of SD-Gibbs implies
that the privacy loss is accumulated over the iterations. To limit this
loss, we propose that each agent must sample a new assignment with a
subsampling probability q. This limits the information being leaked at
each iteration, resulting in bounded privacy loss.

In addition, we provide a refined analysis of privacy within the frame-
work of (ϵ, δ)-DP for P-Gibbs. We simulate P-Gibbs on three benchmark
problems in DCOP literature, namely Ising [23], graph-coloring, and meeting-
scheduling [24]. Our experiments demonstrate our novel algorithm’s practi-
cality and robust performance for a reasonable privacy budget, i.e., ϵ, with
SD-Gibbs as the baseline. Specifically, we show that P-Gibbs provides only
a marginal drop in solution qualities than SD-Gibbs for a desirable privacy
budget.

1.3 Paper Overview

The paper structure is as follows. In Section 2, we place P-Gibbs concerning the
privacy-preserving DCOP literature. We formally introduce DCOP, describe
SD-Gibbs, and define differential privacy (DP) in our context in Section 3.
We illustrate the nature of privacy leaks in SD-Gibbs with Section 4. Section
5 introduces our novel privacy variant P-Gibbs, including a refined analysis
of (ϵ, δ)-DP. Next, in Section 6, we empirically validate P-Gibbs over several
problem instances of benchmark problems in DCOP literature. Our experi-
ments highlight our privacy variant’s efficiency. Section 7 concludes the paper
along with a discussion on future research directions.



Springer Nature 2021 LATEX template

6 Differentially Private Multi-Agent Constraint Optimization

2 Related Work

This section places our work concerning the general DCOP literature, focus-
ing on privacy-preserving DCOPs. Table 1 compares the works described in
this section with our novel privacy variant, P-Gibbs, regarding their privacy
guarantees and scalability.

2.1 Distributed Constraint Optimization Problem
(DCOP)

As aforementioned in Section 1, despite the computationally hard nature of
DCOPs, researchers have proposed various algorithms that aim to solve them
either completely or approximately. Outside of the popular algorithms like
DPOP [11], ADOPT [7], Synch-BB [8], and Max-Sum [12], the field has also
seen some recent sampling-based algorithms. Details follow.

Ottens et al. [13] propose Distributed Upper Confidence Tree (DUCT),
an extension of UCB [25] and UCT [26]. While DUCT outperforms the algo-
rithms above, its per-agent memory requirement is exponential in the number
of agents. It prohibits it from scaling up to larger problems.

Nguyen et al. [16] improve upon DUCT through their sampling-based
DCOP algorithms: Sequential Distributed Gibbs (SD-Gibbs) and Parallel Dis-
tributed Gibbs (PD-Gibbs). These are distributed extensions of the Gibbs
algorithm [22]. Both SD-Gibbs and PD-Gibbs have a linear-space memory
requirement, i.e., the memory requirement per agent is linear in the number
of agents. The authors empirically show that SD-Gibbs and PD-Gibbs find
better solutions than DUCT, run faster, and solve large problems that DUCT
fails to solve due to memory limitations. Therefore, in this work, we focus on
SD-Gibbs. Our results can be trivially extended for PD-Gibbs.

SD-Gibbs [16] is a sampling-based algorithm in which the authors use the
Gibbs distribution [22] to solve DCOPs. The algorithm can be broadly cate-
gorized into the following four phases. (i) Initialization: Each agent initializes
its algorithm-specific variables. (ii) Sampling: Agents sample an assignment
to their variable based on the Gibbs distribution and depending on the assign-
ments of their neighboring agents. (iii) Backtracking: After each agent has
sampled its assignment, they calculate their relative utilities. That is, the dif-
ference between their previous assignment with their current assignment. The
agents then send the utilities to their immediate parents. The parents add
their utilities to the ones received, and the process continues till the root agent.
This concludes one iteration. (iv) Deriving Solution: The backtracking pro-
cess results in the root agent holding the global relative utility. Based on the
solution observed thus far, the root throws away or keeps the solution.

In this paper, we focus on SD-Gibbs due to its improved performance in
terms of solution quality and computational efficiency.
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Algorithm Complete
Agent Topology Constraint Decision Solution Collusion No Privacy
Privacy Privacy Privacy Privacy Privacy Resistance Overhead

P-DPOP [3, 17] ✓ ✓ ◦ ◦ ◦ ✗ ✗ ✗

P 3/2-DPOP [17] ✓ ✓ ◦ ◦ ✓ ✗ ✗ ✗
P 2-DPOP [17] ✓ ✓ ◦ ✓ ✓ ✗ ✗ ✗
P-SyncBB [19] ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗
P-Max-Sum [18] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
P-RODA [27] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
PC-SyncBB [28] ✓ ✗ ✗ ✓ ◦ ✗ ✓ ✗
MD-Max-Sum [29] ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

P-Gibbs ✗ ✓† ✓† ✓‡ ✗ ✓ ✓ ✓

†: P-Gibbs can support agent and topology privacy through anonymous communication (e.g., using codenames [3])
‡: Differentially-private guarantee

Table 1: Comparing existing literature in privacy-preserving DCOPs with
our novel privacy variant, P-Gibbs. Here, “✓” denotes the realization of the
property, “◦” that the property is realized partially, and “✗” if the property
is not realized. Note that the rest of the algorithms provide a cryptographic
guarantee outside of P-Gibbs.

2.2 Privacy in DCOPs

The existing literature focuses on the following techniques to ensure privacy
in DCOPs.

2.2.1 Achieving Privacy through Cryptosystems

Privacy in DCOPs has focused on using cryptographic primitives, such as
partial homomorphic encryption and secret-sharing methods. To quantify the
privacy guarantees, researchers propose the following four notions.
1. Agent privacy [3, 17]. No agent must learn the existence of its non-

neighboring agents, i.e., agents it does not share constraints with.
2. Topology privacy [3, 17]. No agent must discover the existence of topological

constructs in the constraint graph, such as nodes (i.e., variables), edges (i.e.,
constraints), or cycles, unless it owns a variable involved in the construct.

3. Constraint privacy [3, 17]. No agent should be able to discover the nature
of a constraint that does not involve a variable it owns.

4. Decision privacy [3, 17]. No agent should be able to discover the value
that another agent’s variable takes in the solution chosen for the problem
(modulo semiprivate information).
Several privacy-preserving algorithms exist, using secure multi-party com-

putation [30] atop existing DCOP algorithms to provide cryptographic privacy
guarantees. These include P-DPOP [3], P3/2-DPOP, P2-DPOP [17], which
builds on the DPOP algorithm; P-SyncBB [19] and PC-SyncBB [28] over
SynchBB; P-Max-Sum [18] over Max-Sum; and P-RODA [27] which is pri-
vacy variant for algorithms which fit in Region Optimal DCOP Algorithm
(RODA) [27] framework. In Table 1, we provide the known private algorithms
and the privacy notions they satisfy; details follow.

To guarantee agent and (partial) topology privacy, the algorithms P-DPOP,
P 3/2-DPOP, and P 2-DPOP use “codenames” (randomly generated numbers)
in place of the actual variable names and domains. These codenames are used
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for information exchange between agents. The agent selected as the root then
“decrypts” these values to arrive at the solution. In contrast, P-Max-Sum and
PC-SyncBB support topology privacy. These algorithms also use information-
hiding public-key encryption and random shifts and permutations.

P2-DPOP completely preserves constraint privacy. The algorithm uses the
partial homomorphic property of ElGamal encryption for the same. This tech-
nique is unlike P-DPOP and P3/2-DPOP, which merely adds the random
numbers communicated by agents, inadvertently leaking privacy. P-Max-
Sum also preserves constraint privacy by communicating information through
encryptions or random shares.

DCOPs are also solved using region-optimal algorithms such as KOPT [31]
or DALO [32]. Grinshpoun et al. present an umbrella setup, namely RODA,
that generalizes these region-optimal algorithms. The authors present P-
RODA [27], which implements the privacy-preserving implementations of these
region-optimal algorithms. P-RODA uses cryptographic primitives such as
secret sharing and homomorphic encryptions. As such, P-RODA perfectly
simulates RODA but with a significant computational overhead.

The algorithms mentioned above, except PC-SyncBB, assume that agents
do not collude. Note that any two or more colluding agents can leak sensitive
information about the other agents. Using secure multi-party computation,
Tassa et al. [28] show that PC-SyncBB is collusion resistant as long as
the majority of the agents do not collude. Most recently, Kogan et al. [29]
introduced MD-Max-Sum, a privacy-preserving, collusion-resistant DCOP
algorithm built atop the Max-Sum algorithm. Crucially, MD-Max-Sum uses
third parties, namely mediators, to guarantee collusion resistance and has a
reduced run time compared to PC-SyncBB. The algorithm satisfies constraint,
topology, and decision privacy.

Solution Privacy

Research on privacy-preserving algorithms for DCOP typically focuses on
complete algorithms guaranteed to compute the optimal assignment (solu-
tion) [3, 17]. Obviously, one cannot keep the solution secret, so the information
leaked by knowledge of the solution has generally been considered an inevitable
privacy loss. Moreover, as the optimization outcome cannot be preserved, the
computation may compromise agents’ preferences, thereby violating constraint
privacy.

However, it is possible to make the solution, and therefore any information
that can be inferred from it differentially private. We call this property solution
privacy and add it as an additional objective for privacy-preserving DCOP. We
show that our differentially private variant, P-Gibbs, satisfies solution privacy
through randomization of the computation process (Table 1).

Solution Privacy and Decision Privacy. In this paper, we follow the classic
security principle – “no security through obscurity” – meaning that we cannot
assume privacy would be kept by simply hiding decisions from some agents
(the server or other agents might reveal them; agents who get your decision can
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be malicious; decisions may be observed through agents actions by outsiders;
and so on). Thus, in our context, the privacy notions of solution privacy and
decision privacy are not equivalent.

Non-scalability of Existing Private DCOP Algorithm

Unlike our privacy variant P-Gibbs (Table 1), cryptographic primitives and
the computationally expensive nature of DCOPs results in the algorithms
mentioned above not being scalable in terms of the number of agents and
constraints. More concretely, we say that a private DCOP algorithm admits
a privacy overhead if it is significantly more computationally expensive
compared to its non-private variant.

Our definition implies that private algorithms based on cryptographic
primitives incur a significant privacy overhead. E.g., P-DPOP [3] scales up
to 12 agents for graph-coloring and 6 agents for meeting-scheduling. Such a
lack of scalability is also present in privacy-preserving algorithms built atop
approximate algorithms. E.g., P-Max-Sum’s run-time increases three-fold in
magnitude over its non-private variant [18].

2.2.2 Other Privacy Notions

Information Entropy. In a parallel line of work, the authors in [33] use
information entropy to quantify the privacy loss incurred by an algorithm
in solving a distributed constraint problem. The result is later furthered by
[34, 35]. Grinshpoun et al. [35] present private local-search algorithms based
on the algorithms above. The authors use this quantification to show that
their algorithms provide high-quality solutions while preserving privacy. While
the privacy loss metric defined in [33] is interesting, it does not offer a worst-
case guarantee. Practically, even a minor leak may result in information being
revealed completely.

Utilitarian DCOPs. Savaux et al. [36, 37] propose Utilitarian DCOPs
(UDCOPs) where privacy leakage is correlated to the quality of the final assign-
ment. They assume that each agent also maintains a privacy cost for each
assignment’s utility which captures the desire of the agent to preserve that
utility’s privacy. With this modeling, they can derive the overall privacy cost
along with the final solution.

The authors introduce private DCOP algorithms based on this idea (e.g.,
DBOU and DSAU, which are extensions of DBO and DSA, respectively).
The key privacy idea in these algorithms is that agents randomly sample new
assignments and only broadcast the information if it positively changes their
overall utility.

While such a utility-based privacy cost is another interesting way of quanti-
fying privacy leaks in DCOPs, we believe a (ϵ, δ)-DP approach is a more robust
measure of the same. First, the privacy budget used in UDCOPs appears to
be agent-specific (i.e., agents may define it in an arbitrary fashion). As such, it
may not be applicable in practice as the agents may find it difficult to quantify
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the privacy cost of revealing information about a certain resource. Further-
more, even if an agent can estimate its cost at one point, privacy implications
can change with time. That is, the obtained solution quality may not be use-
ful in the future. In contrast, there is a clear consensus on appropriate values
of ϵ and δ in DP, implying quantifiable privacy guarantees.

Second, to the best of our knowledge, while we provide worst-case privacy
guarantees for P-Gibbs, similar to the information entropy-based privacy mea-
sure, there are no worst-case guarantees for the algorithms in [36, 37]. So, even
if we disregard the arbitrary privacy cost assignments by each agent, it is not
possible to say if the solution reveals something about the true utilities. And if
there is a correlation between privacy costs and utilities, it might even reveal
more.

3 Preliminaries

This section formalizes DCOPs, summarizes SD-Gibbs, and defines privacy
definitions relevant to our work.

3.1 Distributed Constraint Optimization Problem
(DCOP)

Distributed Constraint Optimization Problem (DCOP) is a class of problems
comprising a set of variables, a set of agents owning them, and a set of con-
straints defined over the set of variables. These constraints reflect each agent’s
preferences.

Definition 1 (DCOP) A Distributed Constraint Optimization Problem (DCOP) is
a tuple ⟨X ,A,D,F , α⟩ wherein,

• X = {x1, . . . , xp} is a set of variables;

• A = {1, . . . ,m} is a set of agents;

• D = D1 × . . .×Dp is a set of finite domains such that Di is the domain of xi;

• F is a set of utility functions Fij : Di × Dj → R. Fij gives the utility of each
combination of values of variables in its scope. Let var(Fij) denote the variables
in the scope of Fij .

• α : X → A maps each variable to one agent.

In this work, w.l.o.g [38], we assume that p = m, i.e., the number of agents
and the number of variables are equal. We also assume D = Di = Dj , ∀i, j,
i.e., all variables have the same domain. Total utility in DCOP, for a complete
assignment X = (x1, . . . , xp) is:

F (X) ≜
m∑
i=1

∑
j

Fij(X||D)

 , (1)
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where X||D is the projection of X to the subspace on which Fij is defined. The
objective of a DCOP is to find an assignment X∗ that maximizes1 the total
utility, i.e., F (X∗) = maxX∈DF (X).

In DCOPs, a combination of variables (or alternately, agents) is referred
to as a constraint. The utility functions over these constraints quantify how
much each agent prefers a particular constraint. This constraint structure is
captured through a constraint graph.

Definition 2 (Constraint Graph (CG)) Given a DCOP defined by ⟨X ,A,D,F , α⟩,
its constraint graph G = ⟨X , E⟩ is such that (xi, xj) ∈ E , ∀j ∈ var(Fij).

A pseudo-tree arrangement has the same nodes and edges as the constraint
graph. The tree satisfies (i) there is a subset of edges, called tree edges, that
form a rooted tree; and (ii) two variables in a utility function appear in the
same branch of that tree. The other edges are referred to as back edges. Nodes
connected via a tree edge are referred to as parent-child nodes. Likewise, back
edges connect the pseudo-parent and its pseudo-children. Such an arrangement
can be constructed using a distributed-DFS [39].

For the algorithms presented in this paper, let Ni refer to the set of neigh-
bors of xi in CG. Also, let Ci denote the set of children xi in the pseudo-tree,
Pi as the parent of variable xi, and PPi as the set of pseudo-parents of xi.

Furthermore, this paper specifically focuses on constraint privacy, formally
defined in our context next.

Definition 3 (Constraint Privacy) Given a DCOP defined by ⟨X ,A,D,F , α⟩, con-
straint privacy implies that an agent i learns no information regarding the utility
function {Fjk}k∈Nj

of any agent j ∈ A\Ni. That is, for any agent, it does not share
a constraint with.

3.1.1 Example

Consider the maximization problem depicted in Figure 1. Here, |X | = |A| s.t.
X = {x1, x2, x3} and D1 = D2 = D3 = {0, 1}. The constraint graph and one
possible pseudo tree configuration are presented in Figures 1(a) and 1(b). In
Figure 1(b), the solid edges represent the tree edges, while the dashed edges
represent the back edges. Figure 1(c) shows the utility function that is identical
for F12 = F23 = F13. For this example, a solution is as follows. The optimal
assignment is x1 = 1, x2 = 1, and x3 = 1, with the overall utility 6.

3.2 Sequential Distributed Gibbs (SD-Gibbs)

We now describe Sequential Distributed Gibbs (SD-Gibbs) as first introduced
in [16]. In this, the authors map DCOP to a maximum a posteriori (MAP)

1We can also define a DCOP that minimizes the total utility, i.e., F (X∗) = maxX∈D − F (X).
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x2

x1

x3

(a) Constraint Graph

x1

x2

x3

(b) Pseudo Tree

xi xj Fij

0 0 0
0 1 -1
1 0 -1
1 1 2

(c) Utilities (where i <
j)

Fig. 1: DCOP Example

Variables Definition

di and d̂i Values in current and previous iteration
d∗i Value in the best complete solution so far
d̄i Best response value

Ci and C̄i Context and best-response context
ti, t

∗
i , t̄

∗
i Time index, best-response and non-best response index

∆i Difference in current and previous local solution of agent i
∆̄i Difference in current best-response solution with previous
Ω Shifted utility of the current complete solution
Ω̄ Shifted utility of the best-response solution
Ω∗ Shifted utility of the best complete solution

Table 2: Variables maintained by each agent xi in SD-Gibbs

estimation problem. Consider MAP on a Markov Random Field (MRF). MRF
consists of a set of random variables represented by nodes, and a set of potential
functions. Each potential function, represented by θij(xi; xj), is associated
with an edge. Let the graph constituting MRF, with nodes and edges, be
denoted by ⟨V,E⟩.

Let Pr(xi = di; xj = dj) be defined as exp(θij(xi = di; xj = dj)). Then,
the most probable assignment is:

Pr(X) =
1

Z

∏
i,j∈E

eθij(xi,xj) =
1

Z
exp

 ∑
i,j∈E

θij(xi, xj)

 .

Here, Z is the normalization factor. This corresponds to the maximum solution
of DCOP if,

F (X) =
∑
i,j∈E

θij(xi, xj).
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Algorithm 1 Sequential Distributed Gibbs [16]

1: Create pseudo-tree
2: Each agent xi calls INITIALIZE()

Procedure 1 INITIALIZE() [16]

1: di ← d̂i ← d∗i ← d̄i ← ValInit(xi)
2: Ci ← C̄i ← {(xj ,ValInit(xj))|xj ∈ Ni}
3: ti ← t∗i ← t̄∗i ← 0
4: ∆i ← ∆̄i ← 0
5: if xi is root then
6: ti ← t∗i ← t̄∗i ← 0
7: SAMPLE()
8: end if

Procedure 2 SAMPLE() [16]

1: ti ← ti + 1; d̂i ← di
2: di ← Sample based on (2)
3: d̄i ← argmaxd′

i∈Di

∑
⟨xj ,d̄j⟩∈C̄i

Fij(d
′
i, d̄j)

4: ∆i ←
∑

⟨xj ,dj⟩∈Ci

[
Fij(di, dj)− Fij(d̂i, dj)

]
5: ∆̄i ←

∑
⟨xj ,d̄j⟩∈Ci

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
6: Send VALUE(xi, di, d̄i, t

∗
i , t̄

∗
i ) to each xj ∈ Ni

3.2.1 Sampling

We now describe sampling in SD-Gibbs. Let Ci denote agent i’s context, defined
as the set consisting of its neighbors and the value assigned to them. In each
iteration, each agent i samples a value di with the following equation,

Pr(xi|xj ∈ Ni) =
1

Z
exp

 ∑
⟨xj ,dj⟩∈Ci

Fij(di, dj)

 (2)

Let, Pi(xi) = {Pr(xi|xj ∈ X \ {xi})|xi = di ∀di ∈ Di}. That is, Pi repre-
sents SD-Gibbs’ probability distribution of each agent i. The relevant notations
required for the SD-Gibbs algorithm are presented in Table 2.

3.2.2 Algorithm

Table 2 presents the values each agent i maintains in SD-Gibbs. Procedure 2
describes the complete sampling function. For completeness, we present the



Springer Nature 2021 LATEX template

14 Differentially Private Multi-Agent Constraint Optimization

Procedure 3 VALUE(xs, ds, d̄s, t
∗
s, t̄

∗
s) [16]

1: Update ⟨xs, d
′
s ∈ Ci⟩ with (xs, ds)

2: if xs ∈ PPi ∪ {Pi} then
3: Update ⟨xs, d

′
s ∈ C̄i⟩ with (xs, d̄s)

4: else
5: Update ⟨xs, d

′
s ∈ Ci⟩ with (xs, d̄s)

6: end if
7: if xs = Pi then
8: if t̄∗s ≥ t∗sandt̄

∗
s > max{t∗i , t̄∗i } then

9: d∗i ← d̄i; t̄
∗
i ← t̄∗s

10: else if t∗s ≥ t̄∗sandt̄
∗
s > max{t∗i , t̄∗i } then d∗i ← d̄i; t

∗
i ← t∗s

11: end if
12: SAMPLE()
13: if xi is a leaf then
14: Send BACKTRACK(xi,∆i, ∆̄i) to Pi

15: end if
16: end if

Procedure 4 BACKTRACK(xs,∆s, ∆̄s) [16]

1: ∆i ← ∆i +∆s; ∆̄i ← ∆̄i + ∆̄s

2: if Received BACKTRACK from all children in this iteration then
3: Send BACKTRACK(xi,∆i, ∆̄i) to Pi

4: if xi is root then
5: Ω̄← Ω+ ∆̄i; Ω← Ω+∆i

6: if Ω ≥ Ω̄ and Ω > Ω∗ then
7: Ω∗ ← Ω; d∗i ← di; t

∗
i ← ti

8: else if Ω̄ ≥ Ω and Ω̄ > Ω∗ then
9: Ω∗ ← Ω̄; d∗i ← d̄i; t̄

∗
i ← ti

10: end if
11: SAMPLE()
12: end if
13: end if

SD-Gibbs algorithm in Algorithm 1. The algorithm can be summarized as
follows:
1. The algorithm starts with a construction of the pseudo-tree and each

agent initializing each of their variables, from Table 2 to their default
values. The root then starts the sampling, as described in Procedure 2,
and sends the VALUE message (line 6) to each of its neighbors.

2. Upon receiving a VALUE message, each agent invokes Procedure 3. In it,
an agent i first updates its current contexts, Ci and C̄i, with the sender’s
values. If the message is from agent i’s parents, then the agent itself
samples, i.e., executes Procedure 2. This sampling stage continues until
all the leaf agents have executed Procedure 2.
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3. Each leaf agent j then sends a BACKTRACK message to its parent
comprising xj ,∆j , and ∆̄j . As described in Procedure 4, when a parent
receives such a message, it sends a BACKTRACK message to its parent.
The process continues until the root receives the message – concluding
one iteration.

4. Each agent i uses its current (∆i) and current best-response (∆̄i) local
utility differences to reach a solution. We refer to these differences as
relative utilities. Upon receiving a BACKTRACK message, agent i adds
the delta variables of its children to its own. Consequently, these variables
for the root agent quantify the global relative utility. Based on this, at the
end of an iteration, the root decides to keep or throw away the current
solution (Procedure 4, line 4).

As aforementioned, in this work, we focus on constraint privacy to ensure
the privacy of agent preferences. From Faltings et al. [3], constraint privacy
states that no agent must be able to discover the nature of constraint (i.e.,
the utilities) that does not involve a variable it owns. Since absolute privacy
is not an achievable goal [40], we formalise constraint privacy in terms of
(ϵ, δ)-DP [21].

3.3 Differential Privacy (DP)

Differential Privacy (DP) [20, 21] is a popular privacy notion that aims to pro-
vide a statistical guarantee against a database that the inclusion or exclusion
of any single entry will not significantly impact the results of the statistical
analysis. The guarantee makes it difficult for an adversary to infer sensitive
information about specific individuals present in the database from the said
statistical analysis outcome. More concretely, consider any pair of adjacent
databases, i.e., databases differing in a single entry. We say that a randomized
mechanism M is (ϵ, δ) differentially private if the ratio of the probabilities
between adjacent databases as inputs onM is upper-bounded by ϵ with prob-
ability 1 − δ. Here, we have ϵ > 0 and δ ∈ [0, 1). The smaller the value of ϵ,
the higher the privacy protection. Furthermore, the lower the value of δ, the
lower the probability of privacy failure.

DP: Applications. One of the foremost applications of DP is towards private
query releases [21]. Here, the goal is to provide answers to user queries in a
differentially private manner. DP has also emerged as the gold standard of
privacy in the AI/ML literature. For instance, DP is used to protect user’s
sensitive information in ML. DP-variants exist for SVMs [41], PCA [42], Multi-
armed Bandits (MABs) [43] as well as deep learning-based techniques including
DP-SGD [4] and PATE [44]. The mechanism design literature also uses DP
to guarantee the privacy of an agent’s private information [45, 46]. McSherry
and Talwar [47] present the first such mechanism that uses DP to design an
approximately truthful digital goods auction.

DP: Our Setting. As stated, DP is normally defined for adjacent databases.
However, in this instance, not only do we want to protect privacy against
external adversaries but also against curious fellow agents, i.e., agents looking
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to decipher sensitive information. One may note that when the set of variables
and agents involved is globally known, there are more efficient techniques for
distributed optimization using a central coordinator and stochastic gradient
descent. Researchers have developed DP techniques for this context as well [48].
While such algorithms are well-suited for contexts such as federated learning,
where the model parameters are common knowledge, in meeting-scheduling,
they would leak the information of who is meeting with whom, which is usu-
ally the most sensitive information. Therefore, we focus on algorithms where
each participant has local information, i.e., only knows about agents it shares
constraints with and nothing about the rest of the problem.

Local DP. As a result, we consider the local model of differential privacy [21].
It is defined on individual entries rather than databases or, in our setting, on
individual agents. As a result, local DP does not require defining adjacency.
Formally, we want our algorithm for any two utility functions (vectors in Rp)
to satisfy the following definition from [21],

Definition 4 (Local Differential Privacy) A randomized mechanism M : F → R
with domain F and range R satisfies (ϵ, δ)-DP if for any two inputs F, F ′ ∈ F and
for any subset of outputs O ⊆ R we have,

Pr[M(F ) ∈ O] ≤ eϵ Pr[M(F ′) ∈ O] + δ (3)

Definition 4 states that for any two pairs of inputs, F and F ′, the output
of the randomized mechanism M is similar up to a factor ϵ with probability
at least 1− δ. The smaller the ϵ, the more similar the outputs. In other words,
the smaller the ϵ, the harder the adversary finds it to distinguish between F
and F ′. The typical δ values are of the order O(1/m) or O(1/m2) [21], where
m denotes the number of records. In our setting, m denotes the number of
variables or agents.

Privacy Loss. We now present another way of interpreting the local-DP def-
inition defined in Eq. 3. For this, we define the privacy loss random variable
(PRVL) L, as follows:

Lo
M(F )||M(F ′) = ln

(
Pr[M(F ) = o]

Pr[M(F ′) = o]

)
(4)

Now, we can say that a randomized mechanism M satisfies (ϵ, δ)-DP if
with probability at least 1 − δ, we have Lo

M(F )||M(F ′) ≤ ϵ [21]. The PRVL L
is often used to analyze the ϵ and δ guarantees of a DP mechanism, e.g., the
famous Gaussian mechanism [21] as discussed next.

Gaussian Mechanism [21]. As the name suggests, the Gaussian mechanism
privatizes a statistic by adding noise sampled by the Gaussian distribution to
the statistic analysis outcome. More concretely, given the PDF of the Gaussian

distribution N (0, σ2) = 1√
2πσ2

exp
(
− x2

2σ2

)
, the Gaussian mechanism defined

by:
M(F ) ≜ M(F ) + Y,
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is (ϵ, δ)-DP where M(F ) is the (non-private) outcome of the statistic analysis

and Y ∼ N
(
0, 2 ln( 1.25δ ) τ

2

ϵ2

)
is the Gaussian noise added [21]. The term τ

denotes the sensitivity, which is the measure of how much the outcome of the
statistic analysis changes in response to the addition or removal of a single data
entry. In Section 5.3, we re-look at the Gaussian mechanism in our context.

4 Privacy Leakage in SD-Gibbs

In SD-Gibbs, constraint privacy is compromised in the following two ways:

By sampling. Each variable value in SD-Gibbs is sampled according to agent
i’s utility Fij . As values with more utility are more likely to be drawn, SD-
Gibbs leaks sensitive information about these utility functions. Fortunately,
this stage can be secured by simply making distributions more similar across
agents (Section 5.2).

By relative utility ∆. Every leaf agent j in the pseudo-tree sends its ∆j and ∆̄j

to its parent i. The parent agent adds the values to its ∆i and ∆̄i, respectively,
and passes them on up the tree. The process continues until the values reach
the root. Thus, any intermediate agents, or an adversary observing ∆, can
learn something about j’s utility even if sampling is private. E.g., suppose a
particular assignment has a high utility for agent j but is low for others (and
it is known). In that case, an intermediate agent will learn about agent j even
from the aggregated utility.

These privacy leaks follow by observing what critical information gets
transferred by each agent i in Algorithm 1. We ignore t∗ and t̄∗ because these
are simply functions of utility, i.e., will be private by post-processing property
once the utility is private. We next illustrate the same.

Illustrating Privacy Leak in SD-Gibbs on Figure 1

Consider the execution of SD-Gibbs (Algorithm 1) on the example provided
in Figure 1. Recall that we aim to preserve constraint privacy in DCOP. The
agent x1 must not learn anything about the nature of the constraint between
the agents x2 and x3.

Upon execution of Algorithm 1 with each variable initialized with 0, the ini-
tial Gibbs distribution for x2 and x3 (from Eq. (2)) takes the form [0.88, 0.12]
and [0.88, 0.45], respectively. As x1 is the neighboring agent for both x2 and x3,
it will be aware of their current and best assignments. Moreover, as the num-
ber of iterations increases, x1 observes that its Gibbs distribution converges
to [0.002, 0.998]. Further, one can also see that x2’s and x3’s Gibbs distribu-
tion changes to [0.002, 0.998]. That is, x1 can observe that x2 and x3 prefer
assignment 1 (with high probability) given its context. Based on the assign-
ment sampling, x1 already has a qualitative idea of the nature of the constraint
x2—x3. Since it knows it prefers assignment 1, it can estimate the constraint
x2—x3 will be such that it is less or equal in value – for any assignment other
than their current x2 = x3 = 1. If not, x2 and x3 would have changed their
assignments to grab the additional utility.
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Symbol Definition

τ Sensitivity
c Clipping constant
Pi SD-Gibbs probability distribution for Agent i
pi Soft-max function on Pi for Agent i
γ Soft-max temperature parameter
q Sub-sampling probability
T Number of iterations in P-Gibbs

N (0, σ2) Gaussian distribution with mean zero and variance σ2

(ϵs, δ) Privacy parameters of the Sampling stage
(ϵn, δ) Privacy parameters for the Relative utilities

Table 3: Notations

To get a quantitative estimate, x1 can observe the relative utilities. In our
example, as there are only three constraints, x1 can use the information on the
probable assignments of x2 and x3, 1 and 1, and the final utility 6 to derive the
value F23(x2 = 1, x3 = 1) = 6 − F12(x1 = 1, x2 = 1) − F13(x1 = 1, x3 = 1) =
6 − 2 − 2 = 2. Therefore, x1 can learn information regarding the constraint
F23 violating constraint privacy. Applying similar qualitative knowledge of the
assignment, on each iteration’s ∆s, can potentially leak information of the
entire utility function.

With these as a backdrop, we now build upon SD-Gibbs to formally present
our novel, scalable algorithm for DCOPs that preserve constraint privacy,
namely P-Gibbs.

5 P-Gibbs: Preserving Constraint Privacy in
DCOP with SD-Gibbs

In general, for DP, we need to ensure full support of the outcome distribution.
If Pr[M(D′) = o] = 0 for some output o, the privacy loss L incurred is infi-
nite, and one cannot bound ϵ. For the specific context of ensuring constraint
privacy in SD-Gibbs, this implies that all agents must have the same domain
for their variables and non-zero utility for each value within the domain.2 In
other words, D1 = D2 = . . . = Dp and

∣∣Fij(·, ·)
∣∣ > 0,∀i. Without these, the

probability distributions defined in Eq. (2) may not be bounded as any pair
of agents i and j (i ̸= j) may have Di ̸= Dj . As a result, the ϵ with respect
to constraint privacy (Definition 3) will not be defined. Formally, consider the
following claim.

Claim 1 With respect to constraint privacy, SD-Gibbs (Algorithm 1) is non-private,
i.e., the privacy loss variable L is not defined for SD-Gibbs.

2If any agent has a zero utility for some value, then all agents must have zero utility, and
w.l.o.g., we can simply exclude such values from all domains.
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Procedure 5 P-Gibbs SAMPLE()

1: ti ← ti + 1; d̂i ← di
2: β ∼ Uniform(0, 1)
3: // subsampling
4: if β ∈ (0, q] then
5: Pi(xi)← from Eq. (2)
6: // Bounding SD-Gibbs distribution with Soft-max
7: pi(xi, γ)← from Eq. (5)
8: di ← Sample based on pi(xi, γ)
9: else

10: di ← di
11: end if
12: d̄i ← argmaxd′

i∈Di

∑
⟨xj ,d̄j⟩∈C̄i

Fij(d
′
i, d̄j)

13: ∆i ←
∑

⟨xj ,dj⟩∈Ci

[
Fij(di, dj)− Fij(d̂i, dj)

]
14: ∆̄i ←

∑
⟨xj ,d̄j⟩∈C̄i

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
15: // Clipping
16: if |∆i| > c then ∆i = (∆i ≥ 0) ? c : −c
17: if

∣∣∆̄i

∣∣ > c then ∆̄i = (∆̄i ≥ 0) ? c : −c
18: // Perturbing utilities with Gaussian noise
19: ∆i ← ∆i +N (0, τ2σ2)
20: ∆̄i ← ∆̄i +N (0, τ2σ2)
21: Send VALUE(xi, di, d̄i, t

∗
i , t̄

∗
i ) to each xj ∈ Ni

Proof Consider any two agents i, j ∈ A s.t. (i ̸= j) and Di ̸= Dj . W.l.o.g., let
Di = Dj+{d}. From Definition 3, the privacy loss variable L (Eq. (4)) can be written
as,

Ld
Pi||Pj

= ln

(
Pi(xi = d)

Pj(xj = d)

)
= ln

(
v

0

)
where v > 0,

as d ∈ Di while d ̸∈ Dj . Thus, the privacy loss variable, L, is not defined for SD-
Gibbs. □

Claim 1 implies that the privacy budget, ϵ in (ϵ, 0)-DP, is also not-defined
for SD-Gibbs. Consequently, to provide meaningful privacy guarantees for con-
straint privacy in DCOPs, we present P-Gibbs (Section 5). In it, we first use
soft-max with temperature to bound the SD-Gibbs distributions (Section 5.2).
The resulting bound only depends on the temperature parameter and does not
leak any agent’s sensitive information. Then, we “clip” the relative utilities
to further bound the sensitivity (Section 5.3). Lastly, to reduce the growth of
ϵ, we randomly select a subset of agents to sample new values at each iter-
ation. We then provide a refined privacy analysis for the resulting (ϵ, δ)-DP
(Theorem 1). Table 2 and Table 3 provide a reference point for the notations
used in this section.
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5.1 P-Gibbs: Algorithm

Recall that privacy leak in SD-Gibbs is due to the qualitative and quantitative
information loss due to communicating the sampled value d and the relative
utilities ∆, respectively (Section 4). Our privacy variant, P-Gibbs, preserves
this information loss through its novel sampling procedure. We formally pro-
vide the sampling in P-Gibbs with Procedure 5. The differences, compared to
SD-Gibbs’ sampling procedure, are summarized as follows:
1. To preserve constraint privacy loss due to sampling (Procedure 5, Lines

3-9):
• P-Gibbs uses soft-max function over SD-Gibbs distributions for sam-
pling di’s, ∀i. As shown later in Proposition 1, this bounds any two
agent distributions in SD-Gibbs, resulting in finite privacy loss.

• P-Gibbs randomly chooses subsets of agents to sample new values in
each iteration. More specifically, in every iteration, each agent i sam-
ples a new value di with probability q or uses previous values with
probability 1− q.

2. To preserve constraint privacy loss due to relative utilities (Procedure 5,
Lines 13-16):

• In P-Gibbs, we sanitize the relative utilities with calibrated Gaussian
Noise.

• To bound the sensitivity (see Section 5.3), we “clip” the relative utilities
by ±c, where c is the clipping constant (Procedure 5, Lines 16 and 17).

In the next subsection, we formally show that soft-max bounds the SD-
Gibbs probability distributions. We then provide a formal analysis for privacy
loss due to sampling.

5.2 P-Gibbs: Bounding Sampling Divergence with
Soft-max

Towards achieving bounded sampling divergence without compromising on
constraint privacy itself, we propose to apply soft-max to sampling distribu-
tions. Let pi be the soft-max distribution with temperature parameter as γ,
i.e.,

pi(xi, γ) =

{
exp(Pi(xi = dk)/γ)∑

dl∈D exp(Pi(xi = dl)/γ)
; ∀dk ∈ D

}
(5)

Firstly, observe that pi(·, γ), for a finite γ, has full support of the outcome
determination. That is, pi(xi, γ) > 0 s.t. xi = dk,∀dk ∈ D. This observation
ensures that the scenario of an unbounded privacy loss due to pi(xi, γ) = 0,
described earlier with Claim 1, will not occur for P-Gibbs.

Secondly, to also ensure that ϵ is finite, we require that the bound pi(·)
pj(·) for

any distinct pair i and j is bounded. To this end, the following claim shows
that the ratio of the resulting soft-max probabilities, pi(·) and pj(·) for any two
agents i and j, is bounded by 2/γ. The proof uses the fact that D = Di = Dj

and 1/e ≤ exp(pi(x)− pj(x)) ≤ e.
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Proposition 1 For two probability distributions using soft-max, pi and pj defined
by Eq. (5), we have, ∀i, j, ∀d ∈ D and ∀D, s.t. |D| > 1, γ ≥ 1

ln

[
pi(xi = d, γ)

pj(xj = d, γ)

]
≤ 2

γ

Proof Because pi and pj are soft-max distributions, we have,

pi(xi, γ) =

{
exp(Pi(xi = dk)/γ)∑

dl∈D exp(Pi(xi = dl)/γ)
; ∀dk ∈ D

}
,

pj(xj , γ) =

{
exp(Pj(xj = dk)/γ)∑

dl∈D exp(Pj(xj = dl)/γ)
; ∀dk ∈ D

}
.

Now, recall that Pi and Pj are the probability distributions through SD-Gibbs
sampling. With this, observe the following:

ln

[
pi(xi = d, ·)
pj(xj = d, ·)

]
≤ ln


exp(Pi(xi=d)/γ)∑

dl∈D exp(Pi(xi=dl)/γ)

exp(Pj(xj=d)/γ)∑
dl∈D exp(Pj(xj=dl)/γ)

 ≤ ln

[
exp(1/γ(Pi − Pj)))

N1/N2

]
(6)

Here, N1 =
∑

dl∈D exp(Pi(xi = dl)/γ) and N2 =
∑

dl∈D exp(Pj(xj = dl)/γ).
Now, in Eq. (6) observe that both the numerator and denominator in r.h.s of Eq. (6)
are positive. Further, as ln(x) is an increasing function x, this implies that r.h.s
of Eq. (6) is maximum when the numerator is maximum, and the denominator is
minimum. Thus the difference, Pi(xi = d)−Pj(xj = d), can be at-most 1. Therefore,

numerator in r.h.s of Eq. (6) is at-most exp(1/γ) = e1/γ .
The denominator in r.h.s of Eq. (6) is minimum when N1 is minimum and N2 is

maximum. Note that, N1 is minimum when Pi(xi = d) = 0, ∀d, i.e., minimum N1 =

|D|. But, N2 is maximum when Pj(xj = d) = 1,∀d, i.e., maximum N2 = |D| · e1/γ .
Using these values in Eq. (6) completes the claim. □

5.2.1 Effect of Soft-max

We illustrate the effect of soft-max on the SD-Gibbs sampling distribution with
the following example. Let Dj = {d1, d2, d3},∀j such that Pi = [0.8, 0.15, 0.05].
Observe that the distribution is such that the probability of sampling d1
is significantly more than others. Now, the corresponding soft-max distribu-
tions, from Eq. (5), will be: p(·, γ = 1) = [0.50, 0.26, 0.24], p(·, γ = 2) =
[0.41, 0.30, 0.29], and p(·, γ = 10) = [0.35, 0.33, 0.32]. That is, the soft-max dis-
tribution is more uniform than the original distribution. This implies that the
maximum ratio of the probabilities will be smaller. That is, an adversary will
be more indifferent towards the domain values while sampling. For e.g., d1 and
d2 in p(·, γ = 10) compared to in p(·, γ = 1).

Observe that the bound provided in Proposition 1 does not depend on an
agent’s sensitive information. This implies that the bound does not encode
(and reveal) any sensitive information. Thus, we conclude that the bound pro-
vided in Proposition 1 is desirable and hence use it to construct the sampling
distribution in P-Gibbs.
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5.2.2 Privacy Guarantees for Sampling in P-Gibbs

We first calculate the privacy parameters of the sampling stage, denoted by ϵs
and δ, in P-Gibbs. We use an extension of the moments accountant method [4]
for non-Gaussian mechanisms. Following derivations by [49],

Pr[L ≥ ϵs] ≤ max
pi,pj

eλDλ+1[pi||pj]−λϵs (7)

Here, L is the privacy loss between any two agents and Dλ(pi||pj) =

1
λ−1 logEd∼pj

(
pi(d)
pj(d)

)λ

is Rényi divergence [50] of order λ ∈ N+, λ > 1.

From [49], the choice of the hyperparameter λ is arbitrary since the bound
holds for any feasible value of λ. Note that the value of λ determines how tight
the bound is.

Also from [49], we borrow the notion of privacy cost ct(λ). By trivial
manipulation, for each iteration t,

ct(λ) = max
i,j

λDλ+1

[
pi(d)||pj(d)

]
≤ λ · 2/γ, (8)

where Eq. (8) is due to monotonicity Dλ(P ||Q) ≤ Dλ+1(P ||Q) ≤
D∞(P ||Q), ∀λ ≥ 0.

Subsampling

The privacy cost ct in Eq. (8) can be further reduced by subsampling agents
with probability q << 1. Balle et al. [51] show that the privacy guarantees
of a DP mechanism can be amplified by applying the mechanism to a small
random subsample of records of any database.

Reproducing the steps of the sampled Gaussian mechanism analysis by [49]
for our mechanism and classical DP, we formulate the following result.

Theorem 1 Privacy cost ct(λ) at iteration t of a sampling stage of P-Gibbs, with
agent subsampling probability q, is

c
(s)
t (λ) = lnEk∼B(λ+1,q)

[
ek·2/γ

]
, (9)

where B(λ, q) is the binomial distribution with λ experiments and probability of
success as q, λ ∈ N.

Proof The result follows by substituting 2/γ in place of the ratio of normality dis-
tributions in [49, Theorem 3]. □

Unlike the analysis in [49, Theorem 3], we do not have cLt (λ) and cRt (λ), as
well as expectation over the data. This is because we compute the conventional
differential privacy bounds instead of Bayesian DP and, thus, directly use the
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Fig. 2: Variation of ϵs and ϵn vs. λ

worst-case ratio, i.e., 2/γ. Finally, merging the results, we can compute ϵs, δ
across multiple iterations as

ln δ ≤
∑T

t=1 c
(s)
t (λ)− λϵs

ϵs ≤ 1
λ

(∑T
t=1 c

(s)
t (λ)− ln δ

) (10)

Figure 2 shows the variation of ϵs for different values of λ and γ, with the
sampling probability q = 0.1. We observe that λ has a clear effect on the final
ϵs value, and one should ideally minimize the bound over λ.

5.2.3 P-Gibbs∞: An Extreme Case

We presented P-Gibbs, which uses a soft-max with temperature function to
bound the sampling divergence, thereby bounding the privacy loss incurred by
sampling. We smooth the distribution using soft-max’s temperature parameter
to reduce further the information encoded in SD-Gibbs sampling. We then use
Theorem 1 to quantify privacy parameters ϵs and δ.

From Proposition 1, observe that the temperature parameter in P-Gibbs
may be tuned to decrease the overall privacy budget for sampling, i.e., ϵs.
An “extreme” case occurs when γ → ∞. For this, we have pi = pj , which
implies that ϵs → 0. Thus, increasing γ leads to P-Gibbs sampling distribution
mimicking a uniform distribution, as more information on SD-Gibbs sampling
distribution is lost. To distinguish this extreme case, we refer to P-Gibbs with
γ →∞ as P-Gibbs∞.

5.3 P-Gibbs: Privacy of Relative Utilities (∆)

In the previous subsection, we deal with the privacy loss occurring due to sam-
pling in P-Gibbs. As aforementioned, the values ∆ and ∆̄ also leak information
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Algorithm (ϵs, δ) (ϵn, δ) (ϵ = ϵs + ϵn, δ) for T iterations

P-Gibbs
(
2/γ, 0

)
( τσ

√
2 ln 1.25

δ , δ)
(

T
λ c

(s)
t (λ) + T

λ c
(n)
t (λ)− 1

λ ln δ, δ
)

P-Gibbs∞ (0, 0) ( τσ

√
2 ln 1.25

δ , δ)
(

T
λ c

(n)
t (λ)− 1

λ ln δ, δ
)

Table 4: Per-iteration and final (ϵ, δ) bounds.

about agents’ constraints. In order to achieve DP for these ∆’s, we need to
bound its sensitivity. Sensitivity is defined as the maximum possible change in
the output of a function we seek to make privacy-preserving. Formally,

Definition 5 (Sensitivity (τ)) It is the maximum absolute difference between any
two relative utility values ∆ and ∆′, i.e.,

τ = max
∆,∆′

∣∣∣∆−∆′
∣∣∣ (11)

As we clip the relative utilities with a constant c (see Procedure 5, Line
16-17), trivially from Eq. 11, τ = 2 · c.

Next, we must sanitize the relative utilities so as to preserve privacy fully.
We achieve this through the Gaussian noise mechanism (Section 3.3), [21])
defined as

MG(∆) ≜ ∆+ Yi,

where Yi ∼ N (0, τ2σ2), τ is the sensitivity and σ is the noise parameter.
Privacy parameters for the relative utility ∆, denoted by ϵn and δ, can be

computed either using the basic composition along with [21, Theorem A.1] or
the moments accountant [4]. The latter can be unified with the accounting for
the sampling stage by using:

c
(n)
t (λ) = lnEk∼B(λ+1,q)

[
ekDλ+1[N (0,τ2σ2)||N (τ,τ2σ2)]

]
. (12)

Figure 2 shows the variation of ϵn for different values of λ and τ , with the
sampling probability q = 0.1 and σ = 1. We observe that λ has a clear effect
on the final ϵn value as well, although the change is virtually the same for
τ = 10, 25 and 50. The trend is similar to the one observed in Figure 2, i.e.,
ϵn decreases as λ increases. However, the decrease is not smooth when τ = 5,
which sees a sharp change in ϵn as λ increases. This change is similar to what is
observed in [49, Figure 5], suggesting that one should be careful while deciding
on the value of λ.

Note. We provide the formal sampling procedure comprising the privacy
techniques discussed above with Procedure 5. The rest of the procedures are
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the same as provided with Algorithm 1. Table 4 summarises expressions for
per-iteration and total ϵ values for P-Gibbs and P-Gibbs∞.

Collusion Resistance

Recall that in the private DCOP literature, an algorithm is collusion resis-
tant if no subset of agents can collude to gain additional information about
the remaining agents. We remark that P-Gibbs trivially satisfies collusion-
resistance. This is because each agent in P-Gibbs locally adds noise or
randomness to its utility and assignment sampling. Due to the post-processing
property of DP, no subset of the agent will be able to infer any additional
information outside of the (ϵ, δ)-DP guarantee.

6 Experiments

We now empirically evaluate the performance of our novel algorithms, P-Gibbs
w.r.t. to SD-Gibbs. This section first describes our experimental setup and
benchmark problems (Section 6.1). Next, in Section 6.2, we present the results
for P-Gibbs’ performance in terms of solution w.r.t. SD-Gibbs. Section 6.3
presents criteria to empirically explain the privacy protection in P-Gibbs
with regard to changes in the privacy budget. Section 6.4 provides a gen-
eral discussion of the results presented and summarizes the advantages of
our DP-based approach compared to the existing cryptographic approach for
privacy-preserving DCOP algorithms.

6.1 Benchmark Problems and Experimental Setup

We now describe the DCOP benchmark problems and illustrate our experi-
mental setup.

6.1.1 Benchmark Problems

We construct the following problem instances to test our novel differen-
tially private variant, P-Gibbs. These are standard benchmarks in the DCOP
literature.

Ising [23]. We generate 20 sample Ising problems. For this, the constrained
graph is a rectangular grid with each agent/variable connected to its four
nearest neighbors. The problems are such that the number of agents/variables
lie between [10, 20). Each agent’s domain is binary, i.e., Di = {0, 1},∀i. The
constraints are of two types: (i) binary constraints whose strength is sampled
from U [β, β] where β ∈ [1, 10) and (ii) unary constraints whose strength is
sampled from U [−ρ, ρ] where ρ ∈ [0.05, 0.9). Ising is a minimization problem.

Graph-Coloring (GC). We generate 20 sample graph-coloring problems.
The problems are such that the number of agents/variables lies between
[30, 100) and agents’ domain size between [10, 20). Each constraint is a random
integer taken from (0, 10). Graph-coloring is a minimization problem.
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Meeting-Scheduling (MS) [24]. We generate 20 sample meeting-scheduling
problems. The problems are such that the number of agents and variables
lies between [1, 75) with the number of slots, i.e., the domain for each agent
randomly chosen from [30, 100). Each constraint is a random integer taken
from (0, 100), while each meeting may randomly occupy [1, 5] slots. Meeting-
scheduling is a maximization problem.

While meeting-scheduling is a concrete problem [24], even abstract prob-
lems like graph-coloring can model real-world scenarios. E.g., Radio Frequency
or Wireless Network Assignment can be modeled as a graph-coloring prob-
lem [52]. The Ising model is also a widely used benchmark in statistical
physics [23].

Note. Importantly, we perform our experiments on much larger problems than
earlier complete algorithms (e.g., [3]) can handle3. Concerning the infeasibility
of a DCOP solution, we remark that incomplete (or random) algorithms like
MGM, DUCT, and SD-Gibbs do not aim to solve problems with hard con-
straints. A hard constraint will leak vital information about the constraints,
and a differentially private solution will not work in such a setting. Like [16],
we focus on soft constraints; thus, infeasible solutions will not occur.

6.1.2 Experimental Setup

Our experimental setup is as follows.

Implementation. pyDCOP [53] is a Python module that provides imple-
mentations of many DCOP algorithms (DSA, MGM, MaxSum, DPOP, etc.).
It also allows easy implementation of one’s DCOP algorithm by providing
all the required infrastructure: agents, messaging system, and metrics collec-
tion, among others. We use pyDCOP’s public implementation of the SD-Gibbs
algorithm to run our experiments. In addition, we also implement P-Gibbs.

Generating Test-cases. pyDCOP allows for generating random test-cases
for various problems through its command line’s generate option. With this,
we generate instances for our benchmark problems, i.e., Ising, graph-coloring,
and meeting-scheduling. We test the performance of our algorithms across 20
such randomly generated problems.

Method. We consider the utility given by SD-Gibbs’ solution as our baseline.
Further, these algorithms, i.e., SD-Gibbs and P-Gibbs, are random algorithms.
Hence, we run each benchmark problem instance 10 times for a fair comparison
and use the subsequent average utility for our results.
The complete codebase is available at: github.com/magnetar-iiith/PGiBBS.

Performance Measure

We measure P-Gibbs’ performance w.r.t. SD-Gibbs using the following perfor-
mance measure.

3For e.g., DPOP, a non-private, complete algorithm timed-out after 24 hours of computing (i) an
Ising instance with 10 variables, (ii) a graph-coloring instance with 12 variables and |D| = 8, (iii)
a meeting-scheduling instance with 25 variables and |D| = 20. For details, refer to Appendix A.

github.com/magnetar-iiith/PGiBBS
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Fig. 3: The average and standard deviation of P-Gibbs’ Solution Quality (SQ)
for different privacy budgets. Note that, the case with ϵ = 0.046 corresponds
to P-Gibbs∞ as γ =∞.

Definition 6 (Solution Quality (SQ)) Solution quality SQA of an algorithm A is
defined as

SQA =

{
US
UA

for minimization
UA
US

for maximization

for utility of A as UA and SD-Gibbs as US .

With SQ, we normalize P-Gibbs’ utility in the context of SD-Gibbs. SQ ≈
1 indicates that utility does not deteriorate than SD-Gibbs. On the other
hand, SQ ≈ 0 means little utility as compared to the SD-Gibbs solution. It is
possible that SQ > 1 due to randomness and privacy noise acting as simulated
annealing4 [56].

4We remark that this behavior is different from the Distributed Simulated Annealing (DSAN)
algorithm for DCOPs [54, 55]. DSAN is an iterative optimization algorithm with a temperature
parameter that aims to control the likelihood of accepting worse solutions. DSAN consists of
an annealing schedule that determines the change in the temperature parameter over time. As
the parameter decreases, DSAN becomes more selective and explores the solution space more
effectively. Instead of selecting the next assignment through a specific, utility-based distribution
like in SD-Gibbs (Eq. 2), in DSAN, an agent randomly chooses its next assignment. E.g., by
uniform sampling or by swapping values with neighboring agents. DSAN is neither complete nor
private.
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6.2 Results

In this subsection, we present (i) the overall trend for change in P-Gibbs’ SQ
vs. ϵ, and (ii) the effect of hyperparameters (σ, γ, q) and the problem size on
P-Gibbs’ SQ.

6.2.1 General Trends for Solution Quality

We now provide general trends w.r.t. ϵs and SQs. More specifically, we focus
on the change in the SQ with the change in ϵ (aka privacy budget).

(ϵ, δ)-bounds. Throughout these experiments, we choose δ = 10−2, T =
50, τ = 50 and λs as 100. As standard, our choice of δ is such that δ <
1/m [21]. We calculate ϵ using different permutations of γ ∈ {4, 8, 20,∞}, q ∈
{0.1, 0.2}, and σ ∈ {7, 10, 25, 1000}. With these, we obtain the following
ϵ values: (i) ϵ = 0.046 where σ = 1000, γ = ∞ and q = 0.1, (ii) ϵ =
0.662 where σ = 25, γ = 20 and q = 0.1, (iii) ϵ = 1.31 where σ = 25, γ =
20 and q = 0.2, (iv) ϵ = 4.101 where σ = 10, γ = 8 and q = 0.2, (v)
ϵ = 9.55 where σ = 7, γ = 4 and q = 0.2.

Note that the case with ϵ = 0.046 corresponds to P-Gibbs∞ as γ =∞.

Results

Figure 3 presents the overall change in the SQ concerning an increase in ϵ.
We plot SQ scores averaged across all problems. For all three benchmarks, the
average SQ improves between ϵ ∈ [0.046, 9.55]. This behavior is expected as
greater ϵs imply an increase in the subsampling probability and a decrease in
the noise added (σ). The increase in the probability of subsampling allows an
agent to explore more values in its domain. That is an increase in the chance
of encountering better assignments for itself.

We observe that the average solution quality is least for Ising and the
highest for MS. The quality for GC is slightly lower than that of MS. For
all three benchmarks, the quality increases sufficiently with increasing privacy
budget, i.e., ϵ. P-Gibbs’ performance for meeting-schedule is strong, especially
for higher ϵs. Note that ϵ < 1 is typically desirable. We consider ϵ ≥ 1 for
illustrative purposes. P-Gibbs also provides good solution qualities for ϵ < 1.
Specifically, for Ising, the average quality crosses 0.75. For GC, the average
quality remains above 0.8 and crosses 0.92 for MS.

Coefficient of Variation. The Coefficient of Variation (CoV) is a statistical
measure equal to the ratio between the standard deviation and the average.
Note that lower CoVs imply a lower extent of variability with the average
solution quality. We compute the CoV values for each ϵ based on the reported
average and standard deviations (refer to Figure 3).

For Ising, for varying ϵ, we observe a maximum CoV of 0.123 and a min-
imum of 0.050. Likewise, for GC, we observe a minimum CoV of 0.059 and
a maximum of 0.104. For meeting-scheduling, we have 0.044 (minimum) and
0.086 (maximum). Notably, for all three benchmarks, the maximum CoV cor-
responds to ϵ = 0.046. For graph-coloring, the minimum CoV corresponds to
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Fig. 4: The average and standard deviation of P-Gibbs’ Solution Quality (SQ)
for different hyperparameters (σ, γ and q) and the problem size, m.

ϵ = 9.55 and for Ising and meeting-scheduling to ϵ = 4.101. As expected, the
maximum CoV corresponds to the lowest ϵ since the amount of noise (or the
loss in SD-Gibbs’ distribution) is highest. In contrast, higher ϵ infuse lesser
noise, and consequently, the CoVs are lower.

The above observation supports the improvement in solution quality with
increasing ϵ in Figure 3. As ϵ increases, the decrease in CoV values denotes a
lower extent of variability concerning the average solution quality. That is, as ϵ
increases, P-Gibbs is likelier to output a solution quality closer to the average
quality reported.

6.2.2 Effect of Specific Parameters on Solution Quality

We now study the specific effect of parameters σ, γ, and q on the quality
of P-Gibbs’ solution. First, we vary σ while fixing the other parameters and
observing SQ changes. Then, we likewise vary γ followed by q and observe
the change in SQ for these. We conduct these experiments on the same 20
benchmark problem instances as earlier and report the average values across
20 runs.
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Effect of the Noise Parameter (σ)

Similar to our previous subsection experiments, we let λs be 100 and δ = 10−2.
Further, we fix γ = ∞, τ = 50, and q = 0.1. We vary σ from the set
{1000, 100, 50, 25, 10}. As σ decreases, the privacy budget ϵ increases. Intu-
itively, we expect the solution quality to improve with a decrease in noise
added.

Figure 4 presents the change in SQ w.r.t to the change in σ. We derive
the ϵ values using Table 4. As expected, we observe an overall increase in the
solution quality of P-Gibbs as σ decreases. However, the increase is marginal for
graph-coloring, while the quality significantly improves for Ising and meeting-
scheduling.

Interestingly, the solution quality for meeting-scheduling for σ = 10 (ϵ =
0.32) is similar to the earlier reported quality for ϵ = 9.55 (Figure 3). In
contrast, from Figure 3, the SQ for graph-coloring is comfortably better for
ϵ = 9.55.

Effect of the Temperature Parameter (γ)

We now turn our attention to the effect of γ on the solution qualities of
P-Gibbs. For this, we fix τ = 50, σ = 100 and q = 0.1 while varying
γ = {∞, 16, 8, 4, 2}. Similar to the case of σ, as the temperature parameter γ
decreases, the privacy budget ϵ increases. As γ decreases, greater information
of the original SD-Gibbs distribution is retained.

Figure 4 presents the results. We observe an increase in SQs as γ decreases.
This increase is because an increase in γ implies that P-Gibbs’ sampling dis-
tribution tends to the original SD-Gibbs’ distribution. As such, the resulting
solution also tends towards that of SD-Gibbs.

Effect of the subsampling Probability (q)

To study the effect of subsampling probability q, we vary the value from the set
q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We fix the other parameters, i.e., γ = 16, σ = 100,
and τ = 50. As the probability q increases, the privacy budget ϵ increases.

Figure 4 presents our results. Similar to our previous results, we see an
increase in solution quality for graph-coloring as the probability of sampling
increases. This increase is because an increase in the subsampling probability
implies an increase in each agent’s probability of sampling a better assignment.
However, for meeting-scheduling, we do not observe any such trend.

Note. These results show that the loss in sampling information deteriorates
the solution quality in graph-coloring, while meeting-scheduling’s solution
quality largely depends on the amount of noise added. This may be due
to differences between graph-coloring and meeting-scheduling [24]. In par-
ticular, we believe that abstract problems like graph-coloring better satisfy
the SD-Gibbs assumption of statistical independence of variables, while con-
crete problems like meeting-scheduling do not. Thus, solution quality for
graph-coloring depends more on the SD-Gibbs probability distribution than
meeting-scheduling.
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Effect of Problem Size (m)

We now measure the effect of the change in the number of agents (m)
on P-Gibbs’ SQ. To this end, we generate test cases for the two bench-
marks5 Graph-coloring (GC) and Meeting-scheduling (MS), by varying m ∈
{10-30, 30-50, 50-70, 70-90, 90-110}. We fix the hyperparameters in P-Gibbs to
derive ϵ = 0.662. We generate 10 problem instances for each m and report the
average and standard deviation for P-Gibbs’ SQ. Figure 4 depicts the results.

For GC, the average SQ generally increases as the number of agents
increases from 10-30 to 90-110. Further, the standard deviation is more signifi-
cant when the number of agents is small. When m is 50-70 or more, we observe
greater SQ and the standard deviation is lesser than 10-30. Contrarily, for MS,
the average SQ is almost similar across different problem sizes. This behavior
may be due to the SQs being significantly large for each problem size.

Privacy Leak due to Hyperparameter Tuning

Researchers have shown that hyperparameter tuning of ML models may com-
promise their privacy [57]. Fortunately, in our case, the tuning only corresponds
to DP parameters. These parameters can be tuned via simulating privacy com-
putation in advance, without running the actual problem-solving algorithm,
and thus without revealing any information.

6.3 Explaining P-Gibbs’ Privacy Protection for Varying ϵ
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Fig. 5: Visualizing Sampling Distributions for SD-Gibbs and P-Gibbs with a
Random Assignment.

In this paper, we provide a rigorous (ϵ, δ)-DP guarantee for P-Gibbs. More-
over, in the previous subsection, we provide the empirical quality of P-Gibbs’

5We omit Ising from this set of experiments, as Ising instances with > 20 agents ran out of
memory during execution.
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solution w.r.t. SD-Gibbs for a given privacy budget. We now demonstrate the
privacy guarantee of P-Gibbs by comparing the final assignments of P-Gibbs
and SD-Gibbs concerning a random assignment.

Note that a random final assignment will be perfectly privacy-preserving
since no information about an agent’s utility function will get encoded in the
assignment. As such, the closer a DCOP algorithm’s final assignment is to
the random assignment, the greater the privacy protection. Figure 5 depicts
this observation for a graph-coloring benchmark test instance with the domain
D = {d1, . . . , d10} for any variable/agent i.

We can see that SD-Gibbs’ distribution prefers the assignment d2 with
≈ 0.9 probability. Sampling a value with the SD-Gibbs’ distribution will imply
that agent i greatly prefers d2 (i.e., agent i’s utility function has a sufficiently
greater value for d2 compared to D \ {d2}). P-Gibbs’s distribution is closer to
random, thus plugging the information leak. To measure the distance of the
assignments, we introduce the metric: Assignment Distance.

6.3.1 Assignment Distance

As depicted in Figure 5, we can explain the increased privacy guarantees
in P-Gibbs by measuring the distance between the final assignment from P-
Gibbs with a random assignment. To measure the distance, we employ the
Jensen–Shannon divergence (JSD) [58]6. Now, consider a DCOP algorithm A
and domain D = {d1, . . . , dp} such that for each variable/agent i, the assign-
ment distribution after T iterations is given by the vector pi

A = {pid1
, . . . , pidp

}.
Now, consider the following definition.

Definition 7 (Assignment Distance (ADA)) We define Assignment Distance (ADA)
of a DCOP algorithm A as the average Jensen–Shannon divergence (JSD) [58]
between the vector of the assignment distribution for variable/agent i from algorithm
A, i.e., pi

A, with the vector r from the random assignment, i.e., r = 1
|D| ·1p. Formally,

ADA =

∑
i∈[p] JSD(pi

A||r)
p

. (13)

From Eq. (13), ADA ∈ [0, 1]. When ADA → 0, it shows that algorithm A’s
final assignment is closer to the random assignment, i.e., A is as private as a
random assignment. For ADA → 1, the assignment is farthest, implying that
A encodes the maximum information possible. By comparing the assignment
distance, i.e., ADSD-Gibbs and ADP-Gibbs, we can explain the increased
privacy of P-Gibbs.

6JSD [58] is a statistical method to measure the similarity of two probability distributions. It
is based on KL-divergence, but does not require the same support for the distributions.
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Benchmark
Assignment Distance (AD)

SD-Gibbs P-Gibbs (ϵ = 0.046) P-Gibbs (ϵ = 0.662) P-Gibbs (ϵ = 9.55)

Graph-coloring 0.553 0.253 0.275 0.288
Meeting-scheduling 0.71 0.623 0.624 0.64

Table 5: Empirically evaluating Assignment Distance for SD-Gibbs and P-
Gibbs. Note that AD → 0 implies greater privacy protection, while AD → 1
implies maximum information leak.

6.3.2 Experimental Evaluation

To better study assignment distance, we empirically derive its values for two
DCOP benchmarks, graph coloring and meeting scheduling. We omit Ising
from this set of experiments as the domain there is binary.

Instance Setup

For graph coloring, we have 30 agents/variables with domain size 10 and each
constraint between (0, 10]. For meeting scheduling, we have 30 agents/variables
with domain size 10 and each constraint between [−1000, 10] \ {0}.

Results

We run both the benchmark instances 40 times and report the corresponding
assignment distance (AD) values in Table 5. For graph-coloring, AD values
for P-Gibbs are ≈ 50% less than that for SD-Gibbs. Whereas for meeting-
scheduling, it is ≈ 10%. This shows that P-Gibbs’ final assignment encodes
less information compared to SD-Gibbs’, in turn, better preserving constraint
privacy. Moreover, as ϵ increases, the decrease in the noise added and increase
in subsampling probability results in an increase in AP values for P-Gibbs as
the algorithm behaves more like SD-Gibbs.

6.4 Discussion

Overall, P-Gibbs provides strong solution quality for a competitive privacy
budget. Concerning specific hyperparameters, we observe that the amount of
noise (σ) added has the most impact on the quality of the solution – especially
for meeting-scheduling. In practice, one needs to properly tune the parameters
based on the problem at hand [24]. Since ours is the first method of its kind,
to the best of our knowledge, we believe the results presented are strong, and
future work may further improve the performance.

Advantages of our DP-based Approach

We present the first differentially private DCOP algorithm with provable guar-
antees for constraint privacy with P-Gibbs. Here we emphasize the utility of a
DP-based solution compared to the existing cryptographic solutions. Notably,
as also mentioned in [3], in cryptography-based solutions, the final assignment
may leak critical information about the constraints, i.e., existing algorithms do
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not satisfy solution privacy. Our DP-based approach overcomes this prevalent
issue by randomizing the computation and perturbing agents’ utility values.
In turn, the final assignment may not always be optimal, i.e., with P-Gibbs,
there is a drop in solution quality.

Another crucial advantage of DP is the scalability of P-Gibbs. Since our
privacy guarantees do not depend on computationally heavy cryptographic
primitives, we conduct experiments on much larger problems than existing
algorithms (e.g., [3, 17]). P-Gibbs’ run time remains the same as SD-Gibbs in
contrast to private DCOP algorithms based on cryptographic primitives (e.g.,
[18, 19, 28]).

7 Conclusion

In this paper, we addressed the problem of privacy-preserving distributed con-
straint optimization. With our novel algorithm – P-Gibbs, we are the first
to show a DP guarantee for the same. Using the local DP model, our algo-
rithm preserves the privacy of unrelated agents’ preferences. This guarantee
also extends to the solution. We also achieve high-quality solutions with rea-
sonably strong privacy guarantees and efficient computation, especially in
meeting-scheduling problems.

Future Work

As a first attempt at providing a differential privacy guarantee for DCOPs,
we focused on the classical DP notion in this paper. Using the notion of
Bayesian DP [49] may further improve the (ϵ, δ) guarantees. More concretely,
with Bayesian DP, we may be able to estimate the privacy cost ct(λ) with the
agent’s actual distribution (instead of the worst-case for all agents). We remark
that such an estimation is non-trivial as it may require certain assumptions of
other agent’s distribution. We leave the analysis for future work.

Alternatively, one can further enrich our DCOP model by relaxing the
assumption of domains being the same for each agent while ensuring meaning-
ful privacy guarantees. Concerning P-Gibbs, we can also perform experiments
on real-world datasets to further fine-tune the algorithm’s hyperparameters.
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Appendix A Comparing P-Gibbs’ Quality of
Solution with DPOP

Complete algorithms like DPOP fail to solve sufficiently large problems. More
concretely, in our experiments, the pyDCOP’s DPOP solver timed out after
24 hours for (i) an Ising benchmark instance with 10 variables/agents, (ii)
a graph-coloring benchmark instance with 12 variables/agents and |D| = 8,
(iii) a meeting-scheduling benchmark instance with 25 variables/agents and
|D| = 30. Recall that in Section 6, we conduct experiments on significantly
larger problems than these.

As private algorithms built atop DPOP (i.e., P-DPOP, P3/2-DPOP and
P2-DPOP) use computationally expensive cryptographic primitives, these
algorithms are less efficient than DPOP [3, 17]. Given this evidence, we con-
clude that P-Gibbs is significantly more scalable than the DPOP family of
algorithms.
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Fig. A1: The average and standard deviation of P-Gibbs’ Solution Quality
(SQ) for different privacy budgets, compared to DPOP. Note that, the case
with ϵ = 0.046 corresponds to P-Gibbs∞ as γ =∞.

Solution Quality

Next, we want to compare the quality of solutions given by the DPOP family of
algorithms and P-Gibbs. As each of P-DPOP, P3/2-DPOP, and P2-DPOP do
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not any noise/randomness to the computation process, it suffices to compare
the solution quality of DPOP and SD-Gibbs (refer Definition 6). We begin by
setting up the benchmark problems.

Benchmarks. As in Section 6, the instances are created using pyDCOP’s
generate option7.
1. Ising [23]. We generate 5 sample Ising problems with variables/agents

between [5, 8] and Di = {0, 1},∀i. The constraints are of two types: (i)
binary constraints whose strength is sampled from U [β, β] where β ∈ [1, 10)
and (ii) unary constraints whose strength is sampled from U [−ρ, ρ] where
ρ ∈ [0.05, 0.9). Ising is a minimization problem.

2. Graph-coloring (GC). We generate 5 sample graph-coloring problems.
The problems are such that the number of agents/variables lies between
[8, 12] and agents’ domain size between [10, 20). Each constraint is a random
integer taken from (0, 10). Graph-coloring is a minimization problem.

3. Meeting-scheduling (MS). We generate 5 sample meeting-scheduling
problems. The problem instances are such that the number of agents and
variables lies between [15, 20] with the number of slots, i.e., the domain
for each agent randomly chosen from [20, 30]. Each constraint is a random
integer taken from (0, 100), while each meeting may randomly occupy [1, 5]
slots. Meeting-scheduling is a maximization problem.

Results. Figure A1 depicts the results. As previously observed in Figure 4, P-
Gibbs’ solution quality improves as the problem size (m) increases. As DPOP
does not scale, we see that the solution quality remains around 50-75%, with an
increase in the quality with an increase in ϵ. Furthermore, as P-DPOP, P3/2-
DPOP, and P2-DPOP do not add noise/randomness in the solution process,
we argue that these results, although hold for them.

Appendix B Comparing P-Gibbs’ Quality of
Solution with Max-Sum

As P-Max-Sum perfectly simulates Max-Sum, i.e., preserves the solution of
its underlying non-private counterpart [18, Theorem 4.1], we now compare P-
Gibbs’ quality of solution with that of Max-Sum. We begin by generating the
benchmark instances.

Benchmarks. As in Section 6, the instances are created using pyDCOP’s
generate option. We use similarly sized problems as in the experiments in
Section 6.
1. Ising [23]. We generate 5 sample Ising problems with variables/agents

between [10, 20) and Di = {0, 1},∀i. The constraints are of two types: (i)
binary constraints whose strength is sampled from U [β, β] where β ∈ [1, 10)
and (ii) unary constraints whose strength is sampled from U [−ρ, ρ] where
ρ ∈ [0.05, 0.9). Ising is a minimization problem.

7Compared to the instances created in Section 6, we only scale down the number of variables
and the domain size while keeping the nature of the constraints the same.
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Fig. B2: The average and standard deviation of P-Gibbs’ Solution Quality
(SQ) for different privacy budgets, compared to Max-Sum. Note that, the case
with ϵ = 0.046 corresponds to P-Gibbs∞ as γ =∞.

2. Graph-coloring (GC). We generate 5 sample graph-coloring problems.
The problems are such that the number of agents/variables lies between
[50, 100] and agents’ domain size between [10, 20). Each constraint is
a random integer taken from (0, 10). Graph-coloring is a minimization
problem.
We omitted meeting-scheduling from this set of experiments, as Max-Sum

did not perform

Results. For both Ising and GC, the solution quality remains > 1. That is,
P-Gibbs consistently outputs better solutions than Max-Sum. The quality also
improves as the privacy budget, ϵ, increases from 0.046 to 9.55.

Runtime

Here, we show that while P-Max-Sum perfectly simulates Max-Sum, it does so
with a significant computational overhead. More concretely, from [18, Section
6.2], we know that P-Max-Sum’s computational overhead (compared to Max-
Sum), for any iteration and each node is quadratic in the domain size. E.g.,
from [18, Section 6.7], for random graphs, the runtime increases from 100
seconds for |D| = 3, to 242 seconds for |D| = 5 and 450 seconds for |D| = 7.

With this, we conclude that P-Gibbs’ performance is comparable to Max-
Sum (Figure B2) and, importantly, without the significant computational
overhead of P-Max-Sum.
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Comparing P-Gibbs, P-RODA and P-Max-Sum

From Table 1, P-RODA [27] satisfies topology, constraint, and decision pri-
vacy. In terms of performance, P-RODA finds better quality solutions than
P-Max-Sum [27]. With Figure B2, we also see that P-Gibbs provides better
quality of solution than Max-Sum (and, consequently, P-Max-Sum). Given
these observations, we believe that the solutions of P-Gibbs and P-RODA may
be comparable.

Furthermore, our differentially private variant is significantly less compu-
tationally expensive than P-RODA. For instance, in [27, Figure 8], we see that
there is a non-linear increase in P-RODA’s runtime with an increase in the
domain size. In fact, P-RODA takes (a minimum of) ≈ 200 seconds for an iter-
ation when the domain size is 25 [27, Figure 8]. In contrast, P-Gibbs takes ≈
300 and 25 seconds to complete 50 iterations for randomly generated instances
of graph-coloring and meeting-scheduling for the same domain size and 100
agents.

Appendix C Explaining P-Gibbs’ Privacy
Protection for Varying ϵ

To measure the proximity of the assignments between the maximum distri-
bution values, we introduce the metric: Assignment Proximity. The critical
difference between Assignment (AD) Distance and Assignment Proximity (AP)
is that while AD compares the distance between the overall assignment distri-
bution, AP compares the distance between the most probable assignment and
a random assignment.

Assignment Proximity

Consider the following definition.

Definition 8 (Assignment Proximity (APA)) We define Assignment Proximity
(APA) of a DCOP algorithm A as the L2-distance between the vector of the most
probable assignment for each variable across l runs with the vector of the random
assignment. Formally,

APA =

∥∥∥∥∥∥
(
xfi : frequent(x

1
i , . . . , x

l
i)

l

)
i∈[p]

− 1

|D| · 1p

∥∥∥∥∥∥
2

(C1)

where 1p is a p-dimensional unit vector, xki is the final assignment of variable
xi in the k ∈ [l] run, frequent(·) is a function which outputs the most frequently
occurring value given an input vector and xfi is the most frequent assignment of
variable xi.

The intuition behind introducing assignment proximity is that given
APSD-Gibbs and APP-Gibbs, one can compare the proximity of P-Gibbs’
assignment to a random assignment with that of SD-Gibbs. A greater value of
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APSD-Gibbs will imply that with SD-Gibbs, each variable is being assigned
a particular domain value with high probability, in turn encoding maximum
information. In contrast, a lower value of APP-Gibbs will imply that with
P-Gibbs, each variable is being assigned a particular domain value with prob-
ability closer to random (i.e., 1/|D|). By comparing the assignment proximity
values, we can explain the increased privacy of P-Gibbs.

Experimental Evaluation

To better visualize assignment proximity, we empirically derive the values of
it for the two DCOP benchmarks, graph coloring and meeting scheduling.

Instance Setup

For graph coloring, we have 30 agents/variables with domain size 10 and each
constraint between (0, 10]. For meeting scheduling, we have 30 agents/variables
with domain size 20 and each constraint between [−1000, 10] \ {0}.

0.046 0.662 1.31 4.101 9.55

1

2

3

SQ: 0.67 SQ: 0.70 SQ: 0.71
SQ: 0.72 SQ: 0.75

ϵ

A
P

Graph-coloring

P-Gibbs
SD-Gibbs

0.046 0.662 1.31 4.101 9.55

3

4

5

SQ: 0.68 SQ: 0.81 SQ: 0.77 SQ: 0.81 SQ: 0.80

ϵ

A
P

Meeting-Scheduling

P-Gibbs
SD-Gibbs

Fig. C3: Assignment Proximity (AP) for SD-Gibbs and P-Gibbs for different
ϵs, with the corresponding Solution Quality (SQ) values. The lower the AP,
the higher the proximity of an algorithm’s final assignment with a perfectly
random assignment. Thus, an algorithm with lower AP encodes less informa-
tion regarding an agent’s utility function, preserving constraint privacy.

Results

We run both the benchmark instances l = 20 times and report the corre-
sponding assignment proximity (AP) values in Figure C3. From the table,
observe that AP value for P-Gibbs is ≈ 50% less than that for SD-Gibbs.
This shows that P-Gibbs’ final assignment encodes less information compared
to SD-Gibbs’, in turn, better preserving constraint privacy. Moreover, as ϵ
increases, the decrease in the noise added and increase in subsampling proba-
bility results in an increase in AP values for P-Gibbs as the algorithm behaves
more like SD-Gibbs.
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