
Hypergraph Learning with Hyperedge

Expansion

Li Pu and Boi Faltings

Artificial Intelligence Laboratory
École Polytechnique Fédérale de Lausanne

CH-1015, Lausanne, Switzerland
li.pu@epfl.ch, boi.faltings@epfl.ch

Abstract. We propose a new formulation called hyperedge expansion

(HE) for hypergraph learning. The HE expansion transforms the hyper-
graph into a directed graph on the hyperedge level. Compared to the
existing works (e.g. star expansion or normalized hypergraph cut), the
learning results with HE expansion would be less sensitive to the ver-
tex distribution among clusters, especially in the case that cluster sizes
are unbalanced. Because of the special structure of the auxiliary directed
graph, the linear eigenvalue problem of the Laplacian can be transformed
into a quadratic eigenvalue problem, which has some special properties
suitable for semi-supervised learning and clustering problems. We show
in the experiments that the new algorithms based on the HE expansion
achieves statistically significant gains in classification performance and
good scalability for the co-occurrence data.

1 Introduction

Many tasks require clustering in a graph where each edge represents a similarity
relation. Often, it is a co-occurrence relation that involves more than two items,
such as the co-citation and co-purchase relations. The co-occurrence relation can
be represented by a hyperedge that connects two or more vertices in a hyper-
graph. But most clustering algorithms, such as k-means, or spectral clustering,
are defined for graphs but not hypergraphs. Therefore, hyperedge relations are
often transformed into another graph that is easier to handle [1,2,3].

For classification and clustering tasks, the hyperedges are usually transformed
into cliques of edges. This category of techniques includes clique expansion, star
expansion [4], and normalized hypergraph cut (NHC) [5]. In Figure 1 we shown
a simple example of such transformation from a hypergraph to a graph (the
induced graph). Since the transformations are carried out on the vertex level, we
call them vertex expansions.

With a vertex expansion, evaluating the goodness of clustering is done on the
induced graph. For example, in a hyperedge of k vertices, a cut that separates
the hyperedge into 1 and k − 1 vertices would cut k − 1 pairwise edges, while
a cut that splits the vertices in two equal halves would have k2/4 cut edges.
Thus the vertex expansion would prefer an unbalanced clustering. To mitigate

li.pu@epfl.ch
boi.faltings@epfl.ch

2 Hypergraph Learning with Hyperedge Expansion

 !"#!$%
!$&'()*+(

!,!-

!./ 01&!"!23!)

 ./ !"#*4!)v5v2
v8

v4v1 v6
v3 v7

v1

v2

v3

v5

v4 v6

v8

v7

e1
+

e1

!

e2
+

e2

!

01&!"!23!

!$&'()*+(

!56!22*(3

61%3"'&0%7'&8'4*'(

!56!22*(3%'(2%&"+9!4#%

6'4:%#+% !"#*4!)

0

verticese
m

b
e
d
d
in

g
 v

a
lu

e

0

vertices

biased to e
2 unbiased

e
2

e
2

e
1

e
1

Fig. 1. An example of hypergraph embedding with two hyperedges. The hyperedge
expansion embedding is unbiased, while the vertex expansion embedding (not to scale)
depends on the hyperedge sizes. (see Section 4 for more details)

the problem of unbalanced clustering, it is proposed in star expansion and NHC
to use the cluster volume as a normalizer for balancing the cluster sizes. But
such normalization can not completely eliminate the problem. We present the
following example of vertex embedding to explain why the problem still exists.

By computing the eigenvectors of the normalized Laplacian LNHC of the
induced graph, it is possible to project the vertices into an Euclidian space,
which is called embedding in spectral graph learning [5]. On the left side of
Figure 1, we show the 1-dimensional vertex embedding of NHC by the eigenvector
corresponding to the second smallest eigenvalue of LNHC . It is worth to focus on
the vertices that belong to both hyperedges (the overlapping part). Although the
hyperedges have the same weight and the cluster volume normalizer is applied,
the overlapping part is still biased to the side with less vertices (in this case e2
side). This means that the optimal clustering of two clusters should assign the
overlapping part and other vertices in e2 to one cluster. Such bias might be a
problem when the hyperedge sizes are unbalanced, e.g. co-citation relations with
a lot or a few citations. Moreover, the behavior of the artificial normalization (or
“correction”) could be undesirable when many hyperedges intersect with each
other, because the cost of the clustering would depend on how a hyperedge is
split into the clusters. An even split would introduce a different cost compared
to an uneven split.

As any hyperedge that is not entirely within the same cluster represents
a relation that is violated by the clustering, it would be natural to have the
learning result independent of the hyperedge sizes and only depend on the hy-
peredge connectivity and hyperedge weights. We present a new transformation

Hypergraph Learning with Hyperedge Expansion 3

called hyperedge expansion (HE) based on a network flow technique so that the
learning result is invariant to the distribution of vertices among hyperedges. HE
expansion is first carried out on the hyperedge level. Then the learning results
on hyperedges are projected back to the vertices through the adjacency infor-
mation between hyperedges and vertices. In Figure 1, the embedding with HE
expansion places the overlapping vertices in the middle without bias.

The main contributions of this paper are as follows. We formulate the HE
expansion with the Laplacian of the auxiliary directed graph, which can be
transformed into a quadratic eigenvalue problem that has some new properties.
To our best knowledge, this is the first work to use such formulation. We also
present the embedding and semi-supervised learning algorithms for hypergraphs
based on HE expansion. In the experiments the proposed algorithms are com-
pared with state-of-the-art methods and show statistically significant gains in
performance.

2 Problem Statement

A hypergraph H = {V , E , w} consists of a vertex set V , a hyperedge set E , and
a weighting function w : E → R+. Each hyperedge e ∈ E is a subset of V .
A hyperedge e is incident with a vertex v if v ∈ e. The weighted degree of a
vertex is deg(v) =

∑

v∈e,e∈E w(e). The degree of a hyperedge is deg(e) = |e|. We
say a hypergraph H is connected if for any vi, vj there exists a hyperedge path
{e1, e2, ..., ep} such that vi ∈ e1, vj ∈ ep and ek ∩ ek+1 6= ∅ (1 ≤ k < p). Without
loss of generality, we assume the hypergraph is always connected in this paper.

The (undirected) induced graph GH = {V ′, E ′, w′} derived from the hyper-
graph H consists of the same vertex set V ′ = V . An edge e′ ∈ E ′ is placed
between vi and vj in GH if there exists a hyperedge e in H which is incident with
both vi and vj . The edge weight is defined as w′(e′) =

∑

e∈E,e∋vi,vj
w(e)/deg(e).

One can show that the induced graph is closely related to the star expansion
and NHC. In fact there is only a small difference between the Laplacian of the
induced graph and the Laplacian of NHC on the main diagonal.

Let Y denote a set of class labels. A multi-class labeling on a hypergraph H
is a mapping l : V → Y that associates each vertex v with a label l(v). In this
paper, only a single label is allowed for one vertex. Since l defines several clusters
of vertices by the labels, we interchangeably use “clustering” or “partitioning”
in the paper as “labeling”. For a hyperedge e, l(e) = {l(v)|v ∈ e} is the set of
labels associated to e. When |l(e)| > 1, we say that the hyperedge e is broken or
violated by l. Let Vl,y denote the set of vertices that carry label y in the labeling
l, and Vc

l,y = V \ Vl,y denote the remaining vertices.

In a hypergraph semi-supervised learning (HSSL) problem, a partial labeling
l̄ : V̄ → Y is known on a subset of vertices V̄ ⊂ V . We assume that the vertices
in V̄ carry all the labels in Y. The goal of HSSL is to find the full labeling l that
coincides with l̄ on V̄ , and minimizes some objective minl R(H, l) ∈ R. We list

4 Hypergraph Learning with Hyperedge Expansion

two typical objective functions as following,

RHE =
∑

e∈E,|l(e)|>1

w(e), (1)

RNHC =
∑

y∈Y

∑

e∈E

1
deg(e)w(e)|e ∩ Vl,y||e ∩ Vc

l,y|

∑

v∈Vl,y
deg(v)

. (2)

The RHE is the sum of the weights of hyperedges which are broken [6], and
RNHC is defined in [5]. One can show that the (relaxed) optimal solution for
RNHC is an eigenvector of the normalized Laplacian of the induced graph.

Some existing works, for example [7] and [8], have already shown that the
pairwise affinity relations after the projection to the induced graph would intro-
duce information-loss, and working directly on the hypergraph (like the objective
RHE) could produce better performance. Ladicky et al. also experimentally show
that the objective which is invariant to the number of objects (vertices) in each
co-occurrence relation (hyperedge) [9], namely the invariance property, would
achieve better performance on classification tasks. We can verify that RHE sat-
isfies the invariance property, while RNHC does not (see Figure 1).

Although the RHE has been proposed for a long time, all the existing works
focus on the exact algorithms that directly optimize RHE (e.g. see [10] for an
early work and [11] for recent works). These combinatorial algorithms can be effi-
cient when the number of classes is small (e.g. 2 or 3), but the exact algorithm is
NP-hard for an arbitrary number of classes. On the other hand, these algorithm-
s produce a combinatorial solution of hard clustering. There is no information
about the confidence with which a vertex belongs to a cluster.

We use a different approach, i.e. the spectral technique, to target the same
objective RHE . The complexity of our algorithm is linear to the number of
classes, and the final result is a soft clustering where the certainty of assigning
a vertex to a cluster can be interpreted. To our best knowledge, this is the first
work that applies the quadratic eigenvalue analysis to the RHE objective.

In another task called hypergraph embedding, we would like to project the
vertices into a low dimensional Euclidean space Rk where the vertices that are
close to each other in the hypergraph should also stay close (as shown in Fig-
ure 1). RHE and RNHC actually define different notions of “closeness” in the
hypergraph.

3 Hyperedge Expansion

In the simple case of two classes, in order to implement RHE , we need to find a set
of hyperedges of minimum weight that need to be cut to separate the vertices
of the hypergraph into two parts, which is called the minimum hyperedge cut

problem (MHCP). The optimal MHCP solution for the hypergraph shown in
Figure 2 (a) would split hyperedge e3 into two parts and the optimal RHE cost
is w(e3) (for the moment just consider the example hypergraph without knowing
the meaning of the hyperedge subscripts).

Hypergraph Learning with Hyperedge Expansion 5

 !
"

 !
#

$%& $'()* + ,- ./ 01+ 2$%33)/

 ./
"

 ./
#

(b)(a)

 4
"

 4
#

 .4
"

 .4
#

 5
" 5

#

3 $ 26 , 71, 87 9::;

 ./

 4

 5
 !

 .4

 /

$%& $ ()* + ,- .4 01+ 2$%

33)4

 /
"

 /
#

<= ./>

<= ./>

<= ./>
<= ./>

<= 4

<= 4>
<= 4>

<= 4>

<= 5>

<= 5>

<= 5>

<= 5

<= 5>

<= !>

<= !>

<= !>

<= .4>

<= .4>

<= .4>

<= />
<= />

<= /> >

>

connected

component 2

connected

component 1

min!cut

Fig. 2. (a) The original hypergraph where the hyperedge e3 has the smallest weight.
(b) The weighted directed graph Ĝ constructed from the hypergraph. The directed
edge (e+3 , e

−
3) is the minimum cut of Ĝ since its removal separates Ĝ into two strongly

connected components.

The technique for solving MHCP dates back to [10] where the hypergraph is
transformed into a flow network and the minimum hyperedge cut is identified
with a max-flow solution. We use a slightly different transformation as in [12].

The hyperedge expansion works as follows. We construct a directed graph
Ĝ = (V̂ , Ê) that includes two vertices e+ and e− for each hyperedge e in the
original hypergraph. Note that the vertices in Ĝ correspond to the hyperedges,
but not the vertices in the original hypergraph. A directed edge is placed from
e+ to e− with weight w(e) where w is the weighting function in the hypergraph.
For every pair of overlapping hyperedges e1 and e2, two directed edges (e−1 , e

+
2)

and (e−2 , e
+
1) are added to Ĝ with weights w(e2) and w(e1) (see Figure 2 (b)).

Then we can identify the solution of MHCP by finding the min-cut of Ĝ that
separates Ĝ into at least two strongly-connected components. The correctness
follows immediately from the construction of Ĝ. Note that the edges attached
to an e+ node have the same weights, and an e+ node has exactly one outgoing
edge. For any edge in the min-cut which goes from an e− node to an e+ node, we
can replace it with the outgoing edge of the e+ node and construct an equivalent
min-cut. Thus the min-cut could contain only the edges from the e+ nodes to
the e− nodes. As shown in Figure 2 (b), the min-cut solution includes only the
directed edge (e+3 , e

−
3). The cost of the min-cut is w(e3), which is exactly the

same as the cost of the original MHCP.
In matrix form, the adjacency matrix of Ĝ can be defined as

AĜ =

[

0 AW

W 0

]

, (3)

where A is the |E|×|E| adjacency matrix of hyperedges (A(i, j) = 1 if ei∩ej 6= ∅
and ei 6= ej , otherwise A(i, j) = 0), and W = diag([w(e1), w(e2), ...]) is the

6 Hypergraph Learning with Hyperedge Expansion

diagonal matrix of hyperedge weights. The index (i, j) after the matrix indicates
the element at ith row and jth column. We sort the rows and columns of AĜ in

the order [e−1 , e
−
2 , ..., e

+
1 , e

+
2 , ...], so the elements in all other matrices and vectors

should follow the same order. The out-degree matrix of Ĝ is D Ĝ,out = [D 0

0 W],

where D = diag(e⊤WA) and e is an all-ones vector. Then the out-degree
Laplacian of Ĝ can be defined as following

L = D Ĝ,out −AĜ =

[

D −AW

−W W

]

. (4)

There are existing theories about the spectral property of the directed graph
based on symmetrization of L [13,14], and the corresponding learning problem for
directed graph [15]. It is shown that a Cheeger inequality can be established with

the first non-trivial eigenvalue of L̃ = VP+P⊤V
2 , where P is the (non-symmetric)

transition probability matrix of the directed graph and V is the diagonal matrix
of the first non-trivial eigenvector of P . In the transition probability matrix P ,
all out-going edge weights are normalized by the out-degree. For the special
structure of Ĝ in our case, the out-degree normalization could be problematic
since the correct mapping from the min-cut of Ĝ to the original MHCP problem
relies on the special weighting of the edges. When changing the edge weights, it
could be possible that the min-cut of Ĝ also contains edges from the e− nodes
to the e+ nodes, which is undesirable in our case. Instead, we avoid to use the
normalized P and show that the unnormalized Laplacian L is connected to a
relaxation of the min-cut problem on Ĝ.

Denote the nodes in the connected component on one side of the min-cut
with S ⊂ V̂, and the nodes on the other side with Sc. We define a vector

f ∈ {1/
√

|S|, 0}|V̂|, where f(e) is the entry corresponding to the node e. f(e) =

1/
√

|S| if e ∈ S and otherwise 0. It can be shown that f⊤f = 1 and the cost of
the cut can be written as

C =
∑

e1,e2∈V̂,(e1,e2)∈Ê

|S|w(e1, e2) (f(e1)− f(e2)) f(e1). (5)

The second f(e1) ensures that only the edges from S to Sc are counted when
f(e1) = 1/

√

|S| and f(e2) = 0. Then we relax f to take positive continuous
values and find the relaxed f that minimizes C by the Lagrange multiplier
method with constraint f⊤f = 1. When taking the partial derivatives, we drop
the contributions from f(e2) which is close to zero. This implies the following
approximation

∂w(e1, e2) (f(e1)− f(e2)) f(e1)

∂f(e1)
= 2w(e1, e2)f(e1)− w(e1, e2)f(e2)

≈ 2w(e1, e2)f(e1), (6)

∂w(e1, e2) (f(e1)− f(e2)) f(e1)

∂f(e2)
= −w(e1, e2)f(e1). (7)

Hypergraph Learning with Hyperedge Expansion 7

Setting the partial derivative with respect to f(e) to zero, it results in a matrix

form f⊤
(

2D Ĝ,out
−AĜ

)

= 2λf⊤ where λ is the Lagrange multiplier. The ma-

trix on the left side is the same as L except the doubled diagonal. We can also
interpret 2λ as an eigenvalue and f as a left eigenvector.

For a non-Hermitian matrix like L, the Courant-Fischers min-max theorem
does not hold anymore. The field of values of the non-Hermitian matrix is a
superset of the convex hull of the eigenvalues [16], and there is no guarantee
that all the eigenvalues are real. Although L is a non-Hermitian matrix, we
show in the next section that the special structure of Ĝ leads to some special
properties of L as addition to the properties in the general case. These special
properties would allow us to carry out the learning tasks with L.

4 Hypergraph Embedding

The embedding of a (hyper)graph projects the vertices into a low dimensional
Euclidean space. With the NHC objective one can construct the |V| × |V| nor-

malized hypergraph Laplacian LNHC = I − 1
2D

− 1

2

v HWH⊤D
− 1

2

v , where H is
the |E| × |V| incident matrix (H (e, v) = 1 if v ∈ e; otherwise H (e, v) = 0) and
Dv = diag(deg(v)) is the vertex degree matrix. Let g0, ..., gk−1 be the eigen-
vectors of LNHC associated with the k smallest eigenvalues. The embedding
of vertex v in a k-dimensional space is just the row vector at the v’th row of
[g0, ..., gk−1] [5].

We can also carry out this task with the RHE objective by taking the left
eigenvectors of L and mapping the hyperedge embedding back to the vertices.
Suppose we have the left (real) eigenvectors x0, ..., xk−1 associated with the k
smallest real eigenvalues of L, i.e. x⊤

i L = λix
⊤
i , i ∈ {0, ..., k − 1}. Then the

embedding for vertex v can be formulated as

embedding(v) =
[

x−
0 , ..., x

−
k−1

]⊤
H (·, v), (8)

where x−
i means the first half (xi(e

−) part) of xi. But in the most general case the
left eigenvectors could be complex for the non-Hermitian matrix L. Fortunately,
for most real problems, we show that all eigenvectors of L are real.

Theorem 1. All eigenvalues of L are non-negative real numbers and the left

eigenvectors of L are real if and only if there exists γ ∈ R such that the matrix

Q(γ) = γ2W−2 + γW−1(I+W−1D) + (W−1D−A) is negative definite.

Proof. Denote the eigenvalue of L by λ and the left eigenvector by x = [x−, x+],
where x− and x+ are the first and second halves of x. The eigenvalue problem
x⊤L = λx⊤ can be reformulated as

Dx− −W x+ = λx−,

−WAx− +W x+ = λx+.

8 Hypergraph Learning with Hyperedge Expansion

By substituting x+ = W −1(D − λI)x− in the second equation, we obtain
a quadratic eigenvalue problem (QEP) Q(λ)x− = 0. Note that the coefficient
matrices of λ2 and λ are positive definite. It is known that a QEP is overdamped
if and only if there exists γ ∈ R such that the matrix Q(γ) is negative definite
and (W −1D −A) is positive semi-definite (see Theorem 2 and Definition 4 of
[17]). Without loss of generality, the second condition can be always satisfied by
scaling the hyperedge weights with the same factor. It is also known that the
overdamped QEP Q(λ)x− = 0 has 2|E| non-negative real eigenvalues, and thus
2|E| real left eigenvectors. ⊓⊔

The condition stated in Theorem 1 is hard to verify in practice. The state-of-
the-art techniques usually require to actually compute all the eigenvalues of the
QEP. We give a sufficient condition which is easier to verify.

Corollary 1. All eigenvalues of L are non-negative real numbers and the left

eigenvectors of L are real if d(D(i, i) + W(i, i)) > 8D(i, i)W(i, i) for all i ∈
{1, ..., |E|}, where d = mini(D(i, i) +W(i, i)).

Proof. As shown in Definition 1 of [17], the conclusion of Corollary 1 holds if

(

(x−)∗W −1(I +W−1D)x−
)2

> 4
(

(x−)∗W −2x−
) (

(x−)∗(W −1D −A)x−
)

for all non-zero x− ∈ C|E|, where (x−)∗ denotes the conjugate transpose of x−.
Let z = W −1x− and note that W−1 is a diagonal matrix with positive main
diagonal. We can transform the above condition into

(

z∗(W +D)z

z∗z

)2

>
z∗W (4W −1D − 4A)W z

z∗z

for all non-zero z ∈ C
|E|. Both sides of the inequality contain a Rayleigh quo-

tient. It can be shown that d = minz
z∗(W+D)z

z∗z
= mini(D(i, i) +W (i, i)) > 0.

Therefore a sufficient condition is

z∗ (d(W +D)− 4DW + 4WAW) z

z∗z
> 0

for all non-zero z ∈ C|E|, which means that the Hermitian matrix R = (d(W +
D) −4DW+4WAW) must be positive definite. We know that R is positive
definite if R is strictly diagonally dominant and has all positive diagonal entries.
Noting that each row of (WAW −DW) sums up to 0, we obtain the sufficient
condition in Corollary 1. ⊓⊔

In fact we find that all the hypergraphs tested in the experimental section sat-
isfy this sufficient condition except the dataset AmazonBook. But the first 6
eigenvalues (smallest magnitude) of the hypergraph constructed from Amazon-

Book are all real non-negative numbers. Experiments in Section 6 show that the
hyperedge expansion embedding works well in general.

Hypergraph Learning with Hyperedge Expansion 9

5 Hypergraph Semi-supervised Learning

Like the existing works (e.g. NHC and [18]), we convert the multi-class HSSL
problem into a set of binary classification problems. We pick up one class y
each time, compute a class score for each unlabeled vertex v that indicates the
possibility of v belonging to class y, and repeat this procedure for all labels.
Finally the label with the highest class score is assigned to v.

5.1 Computing class scores

The desired procedure should take the hypergraph H, the partial labeling l̄, and
the chosen class y as input, while output the class scores for all unlabeled vertices.
The class score score(v, y) can be defined as the reciprocal of the “distances” from
the labeled vertices of label y to an unlabeled vertex v. An intuitive score(v, y)
could be the reciprocal of the average commute distance in the induced graph
from v to each vertex of label y, which can be computed by the generalized
inverse of LNHC [19]. Or score(v, y) could be obtained by simulating a random
walk on the induced graph with restart from labeled vertices of label y [20]. Here
we compute the scores based on L with hyperedge expansion.

To incorporate the partial labeling, some auxiliary hyperedges have to be
added to the hypergraph. For each label y ∈ Y, we create a label hyperedge

containing all the vertices in V̄ with label y. In other words, a new hyperedge
ey = l̄−1(y) is added to the original hypergraph, which is illustrated in Figure 2
(a) as ey1 and ey2. The weights of all label hyperedges are set to a pre-defined
value wl, i.e. w(ey1) = w(ey2) = ... = wl.

In each step one class is selected (e.g. the chosen class is y = y1 in Figure 2).
Then we define the class modified Laplacian

Ly = L− αB , B =





.
.
.

w(ey)

.
.
.



 (9)

where α is a parameter and B has only one non-zero entry w(ey) in the bottom-
right half diagonal corresponding to the position of e+y . A larger α would have a
bigger influence on guiding the direction of the hyperedge partition around e+y ,
while a smaller α would let the partition follow the intrinsic principle direction
of Ĝ. Note that for each class y ∈ Y the matrix Ly has to be recomputed. We
denote the left eigenvector of Ly by fy.

With the commonly-used symmetric Laplacian, the eigenvector associated
with the second smallest eigenvalue, namely the Fiedler vector, is often taken to
partition the graph. For Ly with arbitrary α > 0, we show that the eigenvector
of Ly with the smallest real eigenvalue has the following property.

Theorem 2. When α > 0, there exists one eigenvalue λ0
y of Ly which is real and

has the smallest real part among all eigenvalues of Ly. The left eigenvector f0
y

corresponding to λ0
y has all positive entries. Furthermore we have λ0

y ≥ −αw(ey).

10 Hypergraph Learning with Hyperedge Expansion

Proof. Consider the matrix L′
y = µI − Ly where I is the identity matrix and

µ > 0. Since the underlying graph is strongly connected, the matrix L′
y is non-

negative and irreducible for some µ. By the Perron-Frobenius theorem, there
exists an all positive left eigenvector f0

y and an eigenvalue µ− λ0
y, which is real

and has the biggest magnitude. Thus f0
y is a left eigenvector of Ly corresponding

to λ0
y. The bound of λ0

y directly follows the spectral radius bound of the Perron-
Frobenius theorem. ⊓⊔

Then we can compute the score of each unlabeled vertex v as the sum of all
f0
y (e

−) values where e is a hyperedge and e ∋ v, i.e. score(v, y) =
∑

e∋v f
0
y (e

−).
This score is repeatedly computed for each class y ∈ Y for v, and finally v is
assigned to the class with the highest score. We could analogically justify the
usage of f0

y as in the argument in the end of Section 3. The only difference is
that all the vertices labeled with y should be assigned to the same side of the
min-cut. This can be modeled as a soft constraint with the term αB in (9).

5.2 The algorithm and complexity

Summing up all the procedures above, we obtain the complete HE expansion
algorithm for HSSL. Only two parameters are required for the algorithm: the
weight for label hyperedges wl and the parameter α. Empirically it is a good
choice to set wl to the largest weight of all hyperedges.

Algorithm 1 : l = HSSL-HE(H = {V , E , w}, l̄ : V̄ → Y, wl, α)

1: Let Eex = E ∪ {ey|y ∈ Y}, where ey = l̄−1(y) of weight wl

2: Compute L from H = {V, Eex, wex} (see (4))
3: Initialize the score matrix S of size |Eex| × |Y|
4: for all y ∈ Y do
5: Compute the matrix Ly = L − αB (see (9))
6: Compute the left eigenvector f0

y of Ly corresponding to the smallest real eigen-
value

7: Fill in the y’s column of S with the f0
y (e

−) part, i.e., the first half of f0
y

8: end for
9: for all v ∈ V \ V̄ do
10: Let l(v) = argmaxy∈Y

∑
e∋v,e∈Eex

S(e, y)
11: end for
12: return l = l ∪ l̄

The HSSL-HE algorithm involves the computation of the eigenvector of a
matrix of size 2N × 2N (N = |E| + |Y|), and this procedure has to be repeat-
ed |Y| times. It is known that each eigenvalue problem can be solved in time
O(nN2) by power iteration methods like Lanczos algorithm, where n is the num-
ber of iterations. The lower bound in Theorem 2 can be used as a good initial
guess of the eigenvalue. If the connectivity between hyperedges is sparse, we
can further reduce the time of computing eigenvector to O(nN) and the total

Hypergraph Learning with Hyperedge Expansion 11

time complexity would be O(nN |Y|). Generally, HSSL-HE would have better
scalability when the number of instances (vertices) is very large and the number
of co-occurrence relations (hyperedges) is relatively small. Such scenarios can
be found in many real applications like categorical data and census data. On
the other hand, the spectral methods that operate on the induced graphs, e.g.
star expansion and NHC, need O(n|E ′|) time where |E ′| is the number of edges
created in the induced graph.

6 Experimental Results

In this section, we present results on two tasks. First, we test the proposed
semi-supervised algorithm on datasets from different domains and compare the
performances with the state-of-the-art methods. Second, we present the result
of the HE expansion embedding.

6.1 Experiment settings

All the classification tasks are conducted in a transductive manner: we first create
a hypergraph from raw data. Then the hypergraph and some (small amount of)
vertex labels are taken as inputs and the algorithm predicts the labels of the
unlabeled vertices. When evaluating the algorithms in repeated runs, the labeled
vertices are randomly chosen from the vertex set such that every class has at
least one labeled vertex, but the same set of labeled vertices is applied to all
tested algorithms in each run. For evaluation we mainly use the macro-averaged
F-score.

Algorithms for comparison: since our proposed algorithm belongs to
the family that only uses relational information, we choose four state-of-the-
art relational-only approaches and one feature-based approach (AnchorGraph)
for comparison 1:

(1) the hMETIS toolkit [6] is a commonly used tool for hypergraph parti-
tioning, which optimizes the RHE objective with a heuristic algorithm. Although
hMETIS is mainly designed for VLSI applications, reports show that this toolk-
it can be applied to general classification/clustering problems [21]. We use the
“pre-assignment of vertices” input file with hMETIS to assign the known labels
in the semi-supervised task.

(2) the normalized hypergraph cut (NHC) algorithm by Zhou et al. [5] first
transforms the hypergraph into an induced graph whose edge weights are normal-
ized by the hyperedge sizes. Then NHC adopts the normalized Laplacian LNHC

to the semi-supervised setting. The NHC algorithm is the most representative
approach among those based on vertex expansions.

(3) the rendezvous algorithm (Rend.) [22] is a semi-supervised learning ap-
proach based on a random walk on a graph. The algorithm first constructs a

1 The implementation of our proposed algorithm (HSSL-HE) can be found in
http://lia.epfl.ch/index.php/research/relational-learning

http://lia.epfl.ch/index.php/research/relational-learning

12 Hypergraph Learning with Hyperedge Expansion

directed graph from the k-nearest neighbors in which all the labeled vertices
have only incoming edges and thus act as absorbing states of the random walk.
Then the algorithm simulates a set of particles that start a random walk from
each unlabeled vertex and stop at some labeled vertices. Intuitively, a particle
from an unlabeled vertex will stop at a labeled vertex of its true label with higher
probability. The algorithm determines the labels based on the outcome of the
random walk. We use the distances in the induced graph (the same as NHC) to
construct the directed k-NN graph. We also apply a Gaussian kernel function to
the distances as instructed by the author.

(4) the semi-supervised kernel k-means (SSKKmeans) [23] is an extension of
the kernel k-means method where the kernel function is a linear combination of
the graph kernel and the label-induced modifier. The label-induced component
includes both same-class rewards and different-classes penalties. Again we use
the induced graph from the hypergraph (the same as NHC) to compute the
graph kernel.

(5) the AnchorGraph algorithm [24] focuses on the scalability of semi-supervised
learning. Instead of constructing a k-NN graph from the original data, Anchor-
Graph chooses a small set of anchors which connect to the s-nearest neighbors
in the original data, and represents each data point with a linear combination of
the anchors. The semi-supervised algorithm is faster because the values to learn
are only the weights of the anchors rather than the labels of the original data.

In the experiments, we use 13 relational-only datasets from three different
domains to evaluate the above algorithms. The AmazonBook co-purchase dataset

contains the books in Amazon.com and the list of books that are co-purchased
[25]. We take three subsets of book products to construct the hypergraphs, where
a vertex represents a book, and a hyperedge represents a co-purchase list of book-
s. The label of each vertex is simply the category of the corresponding book. The
parameter α for algorithm 1 is set to 1 for AmazonBook. We also construct co-
citation hypergraphs from the commonly-used Cora, citeseer, and WebKB data.
For Cora and citeseer, a vertex represents a paper, and a hyperedge contains
all the papers that cite the same paper. For WebKB data (cornell and texas),
besides the link information, word-based content information is also available.
So we create some additional hyperedges that include all the papers or web-
pages that contain the same word. In order to show how the link information
could help in classification, the hypergraphs using only contents (denoted by C)
and contents plus links (denoted by CL) are respectively constructed for each
WebKB dataset. The parameter α is set to 50 for co-citation datasets. In the
last domain, categorical dataset, every instance has a set of nominal attributes
which could take values from a finite set. We use 4 labeled categorical dataset-
s zoo, letter, 20newsgroups, and covertype from the UCI repository. For each
dataset, a hypergraph is constructed by taking instances as vertices and creat-
ing a hyperedge for each value of the attributes. Then every hyperedge contains
the instances that share the same attribute value. We discretize those attributes
whose value is an integer with a range larger than 10 into 10 sections of the
same size. Some tested algorithms (SSKKmeans, NHC, and Rendezvous) do not

Hypergraph Learning with Hyperedge Expansion 13

scale well on letter, 20newsgroups, and covertype, so only a subset is tested for
each of them. We set α = 1 for 20newsgroups and α = 100 for other categorical
datasets. Weighting the hyperedges usually depends on the domain knowledge.
For simplicity, we assign the same weights to all hyperedges in the experiments.

dataset hMETIS SSKKmeans AnchorGraph Rend. NHC HE

AB3

(100/24500/3)
0.565(0.022) 0.446(0.015) 0.519(0.025) — 0.645(0.019) 0.657(0.023)

AB4

(100/18120/4)
0.517(0.107) 0.376(0.016) 0.561(0.058) — 0.765(0.046) 0.798(0.023)

AB5

(80/6965/5)
0.525(0.040) 0.357(0.067) 0.472(0.046) — 0.724(0.087) 0.716(0.064)

Cora

(40/1961/7)
0.477(0.054) 0.449(0.048) 0.500(0.050) — 0.613(0.046) 0.637(0.040)

citeseer

(40/1318/6)
0.492(0.046) 0.361(0.030) 0.401(0.038) — 0.518(0.046) 0.509(0.046)

cornell-CL

(20/195/5)
0.275(0.055) 0.411(0.091) 0.417(0.058) 0.304(0.068) 0.320(0.091) 0.497(0.047)

cornell-C

(20/195/5)
0.279(0.057) 0.427(0.092) 0.425(0.059) 0.299(0.056) 0.346(0.069) 0.480(0.050)

texas-CL

(20/187/5)
0.238(0.028) 0.362(0.050) 0.317(0.066) 0.249(0.042) 0.268(0.089) 0.425(0.045)

texas-C

(20/187/5)
0.236(0.039) 0.350(0.047) 0.338(0.050) 0.254(0.047) 0.267(0.098) 0.410(0.068)

zoo

(15/100/7)
0.467(0.066) 0.822(0.058) 0.803(0.075) 0.571(0.088) 0.359(0.147) 0.832(0.052)

letterAE

(50/1022/5)
0.379(0.049) 0.629(0.023) 0.664(0.039) 0.543(0.039) 0.606(0.047) 0.627(0.028)

20newsgroups

(50/1067/4)
0.489(0.080) 0.480(0.041) 0.552(0.042) 0.482(0.069) 0.642(0.033) 0.628(0.042)

covertype

(50/6344/7)
0.164(0.017) 0.285(0.019) 0.238(0.016) 0.268(0.022) 0.254(0.064) 0.307(0.028)

Table 1. The averaged macro F-scores (and the standard deviation in the parentheses)
on 13 datasets. The algorithms are tested on AmazonBook (AB) and covertype with
10 runs, co-citation data with 50 runs, other categorical data with 100 runs. Some
information about the dataset is shown below the dataset name (#labeled vertices
/ #all vertices / #classes). The bold number indicates a algorithm that performs
significantly better than others (p-value < 0.05 in paired t-test). The Rendezvous
algorithm cannot return a result in a reasonable time period for AmazonBook, Cora
and citeseer.

6.2 Main results

As shown in Table 1, HE performs significantly better than other methods in
most cases. For some datasets, hMETIS does not work very well, partially be-
cause it is mainly designed for VLSI applications, but not general classification
tasks. For cornell and texas, we can observe an improvement from C to CL with

14 Hypergraph Learning with Hyperedge Expansion

the HE algorithm, which confirms that the link information does help in classify-
ing webpages. This improvement, however, does not exist with other algorithms.

Nevertheless, the algorithms directly designed for hypergraphs (hMETIS,
NHC and HE) generally perform significantly better than those based on graphs
(SSKKmeans) or feature vectors (AnchorGraph). It suggests that hypergraph
approaches would be better choices when the data is naturally organized as
co-occurrence relations. For letterAE, the AnchorGraph actually works best,
mainly because the original attributes of letterAE are all integer values (such as
the mean of x-position of the pixels) rather than nominal variables. When the
data naturally follows some pattern in a continuous metric space, methods like
AnchorGraph could be better for capturing the underlying regularity.

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of vertices

ru
n
n
in

g
 t

im
e
 (

s
e
c
o
n
d
s
)

HE−(α=1), m=0.08

HE−(α=5), m=0.20

HE−(α=10), m=0.23

HE−(α=100), m=0.35

HE−(α=500), m=0.46

HE−(α=1000), m=0.46

hMETIS, m=1.08

NHC, m=2.52

SSKKmeans, m=1.98

AnchorGraph, m=1.04

Rendezvous, m=2.35

Fig. 3. The measured running times of different algorithms with 100 labeled vertices
on subsets of covertype. The slope m of each curve is shown in the legend, which is
computed by the least square fitting.

The running time of different algorithms is tested with subsets of covertype
whose vertex set sizes range from 583 to 27056. These subsets are randomly ex-
tracted from the original data. Figure 3 shows the measured times in log scale.
We have shown that the complexity of the HE algorithm mainly depends on the
size of hyperedge set rather than the vertex set. Generally, the HE algorithm
always stays in the same running time level regardless of the vertex set size, be-
cause the number of hyperedges in each subset does not change too much (from
122 to 143). Therefore the HE algorithm can be orders of magnitude faster than
the approaches based on the induced graph when the number of hyperedges is
smaller than the number of vertices. By increasing the parameter α, we can
observe that HE runs faster due to the higher convergence rate of the eigenvec-
tor computation. In practice, the choice of α also depends on the classification
performance, but the running time would not change by more than an order

Hypergraph Learning with Hyperedge Expansion 15

of magnitude when tuning α. The running times of hMETIS and AnchorGraph
approximately grow linearly with respect to the number of vertices, while for
NHC, SSKKmeans and Rendezvous the running time grows quadratically.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

bear

carp

clam

crab

deer

dogfish dolphin

dove
flamingo

flea

frog
girl

gnat

gorilla

gull
hawk

honeybee
housefly

kiwi

ladybird

lion

lobster

mink

newt

octopus

ostrich
penguin

pitviper

platypus

pony

scorpion

seahorse

seal

sealion
seasnake

seawasp

slowworm
squirrel

starfish

stingray

swan

toad

tortoise
tuatara vampire

wasp
worm

HEC embedding

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

bear

carp

cavy

clam
crab

deer

dogfish

dolphin

dove
flamingo

flea

frog

girl

gnat

gorilla
gull

hawk
honeybee

kiwiladybird

lion
lobster minknewt

octopus

ostrich

penguin

pitviper

platypus

pony

pussycatscorpion

seahorse

seal

sealion

seasnake
seawasp

slowworm

squirrel

starfish

stingray

swan

toad

tortoise

tuatara

vampire

worm

NHC embedding

Fig. 4. The vertex embeddings of zoo with the eigenvectors (scaled) corresponding to
the 2nd and 3rd smallest eigenvalues (for both HE and NHC embedding).

We use both HE embedding and NHC embedding to project the vertices
(animals) of zoo into a low dimensional space. The results are shown in Figure
4. It can be seen that the HE embedding generates a different picture compared
to the NHC embedding. In general the HE embedding shows a clearer separation
between different classes in the 2-dimensional space, but for some instances (e.g.
seasnake and platypus) both embeddings fail to give them a clear affiliation,
mainly due to their special attributes.

7 Conclusion and Future Work

In this paper we propose a new formulation called hyperedge expansion and new
algorithms for the semi-supervised learning and embedding tasks of hypergraph.
Compared to the existing methods, the learning results with the hyperedge ex-
pansion is less sensitive to the hyperedges sizes when the data is organized with
co-occurrence relations.

Our preliminary work has shown that the hyperedge expansion would be
generally better than the vertex expansions when the average Jaccard coefficient
between the hyperedges is high. Thus it is interesting to theoretically further
investigate the applicable scopes of vertex expansions and hyperedge expansion.
Moreover, we are interested in applying the hyperedge expansion technique to a
broader range of real problems such as social networks and biological networks.

References

1. Chung, F.: The Laplacian of a hypergraph. Expanding graphs (DIMACS series)
(1993) 21–36

16 Hypergraph Learning with Hyperedge Expansion

2. Storm, C.: The zeta function of a hypergraph. The electronic journal of combina-
torics 13(R84) (2006)

3. Balof, B., Storm, C.: Constructing isospectral non-isomorphic digraphs from hy-
pergraphs. Journal of Graph Theory 63(3) (2010) 231–242

4. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In:
Proceedings of the 23rd ICML. (2006)

5. Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: Clustering, classi-
fication, and embedding. In: Advances in Neural Information Processing Systems.
(2007)

6. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: application in VLSI domain. In: Proceedings of the 34th annual Design
Automation Conference. (1997)

7. Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric
non-negative tensor factorization. Proceedings of ECCV (2006)

8. Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. Ad-
vances in Neural Information Processing Systems (2009)

9. Ladicky, L., Russell, C., Kohli, P., Torr, P.: Graph cut based inference with co-
occurrence statistics. In: Proceedings of ECCV. (2010)

10. Lawler, E.: Cutsets and partitions of hypergraphs. Networks 3(3) (1973) 275–285
11. Fukunaga, T.: Computing minimum multiway cuts in hypergraphs from hypertree

packings. Integer Programming and Combinatorial Optimization (2010)
12. Acid, S., Campos, L.: An algorithm for finding minimum d-separating sets in belief

networks. In: Proceedings of the 12th UAI. (1996)
13. Wu, C.: On Rayleigh-Ritz ratios of a generalized Laplacian matrix of directed

graphs. Linear algebra and its applications 402 (2005) 207–227
14. Chung, F.: Laplacians and the Cheeger inequality for directed graphs. Annals of

Combinatorics 9(1) (2005) 1–19
15. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on

a directed graph. In: Proceedings of the 22nd ICML. (2005)
16. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press

(1991)
17. Guo, C., Lancaster, P.: Algorithms for hyperbolic quadratic eigenvalue problems.

Mathematics of Computation (2005) 1777–1791
18. Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification.

In: Proceeding of the 14th ACM SIGKDD. (2008)
19. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing

17(4) (2007) 395–416
20. Lin, F., Cohen, W.: Semi-supervised classification of network data using very few

labels. In: International Conference on Advances in Social Networks Analysis and
Mining. (2010) 192–199

21. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research 3 (2003) 583–617

22. Azran, A.: The rendezvous algorithm: Multiclass semi-supervised learning with
markov random walks. In: Proceedings of the 24th ICML. (2007)

23. Kulis, B., Basu, S., Dhillon, I., Mooney, R.: Semi-supervised graph clustering: a
kernel approach. In: Proceedings of the 22nd ICML. (2005)

24. Liu, W., He, J., Chang, S.: Large graph construction for scalable semi-supervised
learning. In: Proceedings of the 27th ICML. (2010)

25. SNAP: http://snap.stanford.edu/data/amazon-meta.html

http://snap.stanford.edu/data/amazon-meta.html

	Hypergraph Learning with Hyperedge Expansion
	Introduction
	Problem Statement
	Hyperedge Expansion
	Hypergraph Embedding
	Hypergraph Semi-supervised Learning
	Computing class scores
	The algorithm and complexity

	Experimental Results
	Experiment settings
	Main results

	Conclusion and Future Work

