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ABSTRACT
We consider a participatory sensing scenario where a group
of private sensors observes the same phenomenon, such as
air pollution. Since sensors need to be installed and main-
tained, owners of sensors are inclined to provide inaccurate
or random data. We design a novel payment mechanism
that incentivizes honest behavior by scoring sensors based
on the quality of their reports. The basic principle follows
the standard Bayesian Truth Serum (BTS) paradigm, where
highest rewards are obtained for reports that are surprisingly
common. The mechanism, however, eliminates the main
drawback of the BTS in a sensing scenario since it does not
require sensors to report predictions regarding the overall
distribution of sensors’ measurements. As it is the case with
other peer prediction methods, the mechanism admits un-
informed equilibria. However, in the novel mechanism these
equilibria result in worse payoff than truthful reporting.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

General Terms
Economics; Measurement

Keywords
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1. INTRODUCTION
Private mobile devices equipped with sensors represent a

great opportunity in acquiring information about spatially
distributed phenomena, such as, air pollution or weather.
Instead of deploying sensors themselves, parties interested
in monitoring these phenomena can ask the crowd (owners
of the mobile devices) to report data collected by ubiquitous
sensing devices. This approach is called participatory [2] or
community sensing [1].

Although mobile devices are ubiquitous, sensing induces a
certain amount of cost due to the fact that sensing modules
need to be installed and maintained. Therefore, beside tech-
niques for filtering and aggregating information, one needs
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to consider mechanisms that incentivize the crowd to par-
ticipate in the first place. For example, providing monetary
rewards in return for sensors’ measurements is one form of
incentive. In general, a rewarding system should take into
account many orthogonal aspects when considering sensors’
utility, ranging from privacy concerns to location prefer-
ences. We solely focus on the problem of eliciting accurate
measurements and assume that sensors’ utility is defined
through monetary incentives that are appropriately scaled
to cover the cost of sensing.

From a game theoretic perspective, a single sensor and its
owner can be considered to be a rational agent whose goal
is to maximize her profit. On the other hand, a party in-
terested in monitoring a certain phenomenon, often called
aggregator or center, can be regarded as a mechanism de-
signer that wants to elicit honest information.

A peculiar property of a participatory sensing setting is
that the center has no control over the sensing devices, nor it
has a way of directly verifying the correctness of the obtained
data. This means that standard approaches of constructing
incentives based on the quality of the provided information,
e. g. proper scoring rules [21, 9] or prediction markets [10,
3], are not applicable in our case.

Instead of directly verifying the collected data, the center
can use peer evaluation techniques. This is the basic idea
of methods based on the peer prediction principle [15, 11],
where an agent’s score reflects the information her report
carries about the reports of other participants.

In general, several aspects are important when it comes to
designing a peer prediction mechanism suitable for the par-
ticipatory sensing setting. First, a mechanism should have
a structure that is knowledge-free of sensors’ beliefs because
sensors may not believe that the center can easily acquire
their private beliefs without directly eliciting them. The
second desirable property is a low complexity in terms of
the amount of information being elicited. In other words, a
mechanism should elicit only sensors’ measurements, with-
out requiring sensors to provide additional information, e.g.
their posterior beliefs as it is the case for the Bayesian Truth
Serum [16]. Finally, a mechanism should make uninformed
equilibria (equilibria where sensors do not perform measure-
ments) less desirable than informed equilibria, thus provid-
ing incentives that are resilient to collusion.

One of the peer prediction methods proposed for infor-
mation elicitation in community sensing setting is the Peer
Truth Serum (PTS) from [8]. It rewards a sensor for re-
porting its measurement if the sensor’s report matches the
report of a peer sensor, with a score inversely proportional



to an estimated prior probability of the sensor’s report. The
incentive compatibility of the mechanism, however, is only
guaranteed if the estimated prior corresponds to sensors’ be-
liefs. Furthermore, the mechanism admits uninformed equi-
libria that can result in significantly higher expected payoffs
than truthful reporting. For example, reporting the least
likely value according to the estimated prior is an equilib-
rium strategy with the highest payoff.

While uninformed equilibria are not avoidable in the peer
prediction settings, we would like them to be less profitable
than the informed ones. We design a mechanism based on
the principles of the Bayesian Truth Serum (BTS) paradigm
[16], in which the highest reward is obtained for the report
that is more common than expected. Unlike the original
BTS mechanism, our novel mechanism does not require sen-
sors to have a common prior belief and is minimal in a sense
that sensors report only their measurements. To empha-
size that the mechanism extends the PTS mechanism using
the BTS principle, we refer to it as Logarithmic Peer Truth
Serum (logarithmic PTS).

The novel mechanism is applicable to a setting where non-
binary information is elicited from a large group of agents
whose observations are statistically similar. In particular, we
focus on a pollution sensing scenario where a dense network
of sensors with similar characteristics measure air quality in
different locations of a certain urban area.

The logarithmic PTS mechanism has several desirable prop-
erties:

• It is incentive compatible and allows sensors to have
different and private prior beliefs.

• Any uninformed equilibrium, including random report-
ing or collusion on one value, results in worse payoff
than truthful reporting.

• Collusion strategies that are based on sensors’ mea-
surements do not lead to higher expected payoff than
truthful reporting.

Furthermore, using a realistic dataset of pollution mea-
surements, similar to the one from [8], we analyze the prop-
erties of our mechanism and verify its practicality.

2. RELATED WORK
Although there is a vast literature about different aspects

of participatory and community sensing paradigms, such as
an optimal sensor placement [14] or privacy and trustwor-
thiness of sensors [7, 4, 22], we focus in this section on work
related to incentives for reporting accurate information.

The original version of the peer prediction method [15]
and its extensions [12, 13] are minimal in a sense that they
elicit only desired information, but they require knowledge
of agents’ prior beliefs. This requirement represents a sig-
nificant drawback that is not easy to fulfill.

The Bayesian Truth Serum [16], and its variants [26, 18,
19], use additional report to remove the need of agents’ prior
beliefs. However, the BTS mechanisms assume that agents
share common prior belief, which in our case might not hold
since different sensors can have different prior information
about the pollution phenomenon. For example, some sen-
sors might have access to prior concentration estimates of
pollutants, while others do not. Common prior is also as-
sumed by the mechanisms in [27] and [20].

Peer prediction without a common prior [25] elicits binary
information without requiring the knowledge of agents’ pri-
ors, nor common prior belief among agents. However, the
mechanism assumes a temporal segmentation of the elici-
tation process that allows the mechanism to elicit agents’
beliefs prior to their observations. This sort of temporal
segmentation is hard to achieve in participatory sensing set-
tings.

It is also worth mentioning mechanisms that are not nec-
essarily truthful, but do elicit useful information. Here we
can include the mechanism from [8], already mentioned in
the introduction, as well as the mechanism of [23, 24] that
elicits common knowledge rather than private information.

A setting similar to ours has been analyzed by [6]. The
authors construct a mechanism that has strong incentive
properties, similar to the properties of our mechanism, but
the mechanism can only be applied for elicitation of binary
information. Most pollution sensing applications have more
than two levels of pollution.

3. PRELIMINARIES
We consider a scenario where a large group of similar sen-

sors measure air quality over a certain urban area. In order
to compensate for the cost of sensing, the center provides
incentives to sensors in return for their measurements.

We model sensors as rational agents who seek to maximize
their rewards. The set of all sensors is denoted by S. After
measuring the air pollution phenomenon, a sensor s obtains
a private signal Xs that corresponds to the level of pollution
at its location. We consider private signal Xs that takes
values in finite discrete set {x, y, z, ...}; this is a reasonable
assumption considering the fact that ubiquitous sensors are
prone to measurement errors. For example, there could be
three levels of pollution {low,medium, high}.

Pollution is a localized phenomenon, meaning that its
value significantly varies with distance. We model it sim-
plistically, using two hidden variables Γ and Λ, which intu-
itively describe how global and local parameters influence a
sensor’s measurement at a certain location. More precisely,
our pollution model has the following structure.

• Random variable Γ describes a global state of the world
and is generated according to a distribution Pr(Γ).
Random variable Λs describes local variations in the
vicinity of a sensor s. It is related to Γ through a
distribution Pr(Λs|Γ).

• Sensor s’s measurement Xs is dependent on both Γ
and Λs, and the dependency is described by a distri-
bution Pr(Xs|Λs,Γ). Since sensors are assumed to be
statistically similar, we have that Pr(Xs = x|Λs,Γ) =
Pr(Xs′ = x|Λs′ ,Γ) for Λs = Λs′ , which further implies
Pr(Xs = x|Γ) = Pr(Xs′ = x|Γ).

• Two sensors s and s′ that are close to each other have
equal local variables Λs = Λs′ , while Xs is condition-
ally independent of Xs′ given Γ and Λs, i.e.
Pr(Xs|Xs′ ,Λs,Γ) = Pr(Xs|Λs,Γ). For two sensors s
and s′ that are significantly away from each other, we
assume conditional independence of Xs and Xs′ given
global state Γ, i.e. Pr(Xs|Xs′ ,Γ) = Pr(Xs|Γ).

• All probabilities have full support (they are greater
than 0), and measurements are stochastically relevant



for Λs, i.e. Pr(Λs|Xs = x,Γ) and Pr(Λs|Xs = y,Γ)
differ for y 6= x (and similarly for sets of measure-
ments, {x1, x2, ...} 6= {y1, y2, ...} implies inequality be-
tween Pr(Λs|Xs ∈ {x1, x2, ...},Γ) and Pr(Λs|Xs ∈
{y1, y2, ...},Γ)). The latter is a standard assumption
in the peer prediction settings [15].

We do not require the center to have access to the pollu-
tion model. Sensors, on the other hand, form beliefs about
the parameters (distributions) of the pollution model. Dif-
ferent sensors can have different beliefs about the model,
and these beliefs are not known to the center. Since our
analysis uses only beliefs of sensor s, we denote them in the
same way as the parameters of the pollution model. For ex-
ample, the belief of sensor s about how measurements are
generated is denoted by Pr(Xs|Λs,Γ).

From a sensor s’s perspective, there are two groups of
sensors: the set of all sensors, denoted by S; and peer sen-
sors P that are placed in the vicinity of sensor s. Since the
pollution model can always be applied to smaller scales, for
example, by considering separately different parts of an ur-
ban area, we assume that the network of sensors is equally
dense everywhere so that 1 << |P | << |S| holds.

Sensors might not be honest, so we differentiate sensor s’s
measurement Xs, from its reported values Ys. We classify
reporting strategies into three types:

• Honest reporting, i.e. Ys = Xs.

• Heuristic reporting without making any measurements,
described by a distribution πheur, where a sensor s re-
ports Ys = x with probability πheur(x).

• Misreporting in which reports are obtained from mea-
surements using function ρ : {x, y, z, ....} → {x, y, z, ....},
i.e. Ys = ρ(Xs).

These three types of strategies cover the most interesting
cases of sensor behaviour, including the collusion strategy
where all agents report the same value. We have not consid-
ered strategies that are dependent on sensors’ locations. In a
dense network of mobile sensors, these strategies are hard to
coordinate, while because of privacy concerns, sensors might
not be willing to share their locations.

4. LOGARITHMIC SCORE
When making probabilistic estimates of data, one can de-

fine a loss function to measure the quality of the estimates.
One of the most well known loss functions in machine learn-
ing and information theory is the logarithmic loss function
log 1

p(x)
, where p is a probabilistic estimate and x is the true

value of the data being estimated. For example, if one eval-
uates that a probability of a binary variable being equal to
1 is 0.9, and the true value is 1, the logarithmic loss is equal
to log 1

0.9
.

The negative value of the logarithmic loss can be used as
a scoring function in elicitation of private beliefs, and it is
part of a wider class of mechanisms called proper scoring
rules [21, 9]. In game theoretic terms, an agent provides her
subjective probability p about a certain event, and upon the
realization of the event is scored with:

score = a · log(p(x)) + b

where x is the outcome of the event, and a > 0 and b are
scaling parameters. It can be shown that the expected log-
arithmic score is maximized when the agent provides her
true beliefs about the event. Although the logarithmic score
is not bounded, from a practical point of view this is al-
most never a problem. Namely, the lower bound on possible
values of p(x) is usually not hard to estimate, so by using
scaling parameters a and b, one can easily fit scores to an
arbitrary interval. This implies that individual rationality
and bounded payments are in practice achievable. Further-
more, we can also scale payments so that they cover the cost
of measurements. For simplicity, we set a = 1 and b = 0 in
the remaining part of the paper.

The logarithmic score is associated with Kullback-Leibler
divergence (KL divergence), which measures the difference
between the expected score when the true (optimal) belief
ptrue is reported and the expected score when an agent re-
ports belief preport:

KL(ptrue||preport) =
∑
x

ptrue(x) log
ptrue(x)

preport(x)

It is a well known fact that KL divergence is positive and is
equal to 0 if and only if preport = ptrue.

5. LOGARITHMIC PEER TRUTH SERUM
The basic idea behind our mechanism is to score a sensor

s based on how statistically significant its report is. To de-
termine the statistical significance, we first sample reports
on a global scale and make a normalized histogram xglobal
of reported values. That is, for each possible measurement
value x, we evaluate the fraction of reports in the sample
that are equal to x. Second, we calculate the normalized
histogram xlocal of reports that are in vicinity of sensor s.
Finally, the statistical significance of a report equal to x is

then defined as log xlocal(x)
xglobal(x)

.

Although the (original) Bayesian Truth Serum [16] has a
different and more complex structure of the score, our ap-
proach has some similarities to it. Namely, the idea behind
our approach is not to assign highest rewards to the most
common reports, but to the reports that are more common
than expected. To do so, we also use the logarithmic scoring
rule. Thus, we call our mechanism Logarithmic Peer Truth
Serum.

Logarithmic Peer Truth Serum has the following struc-
ture:

• Consider a sensor whose report is equal to Ys. Let us
denote by P , sensor s’s peers, i.e. sensors that are in
vicinity of sensor s.

• Calculate two empirical frequencies:

– Frequency of reports equal to x among sensor s’s
peers:

xlocal(x) =
1

|P |
∑
p∈P

1Yp=x

– Frequency of reports equal to x among reference
sensors σ (|σ| >> 1) that are not each other’s
peers nor peers of sensor s:

xglobal(x) =
1

|σ|
∑
s′∈σ

1Ys′=x



• Finally, reward sensor s with:

score = log
xlocal(Ys)

xglobal(Ys)

To avoid potential issues with 0 values in xlocal and xglobal
histograms, one can apply Laplace (additive) smoothing with
small smoothing parameters, or simply include the report of
sensor s in both histograms. The latter would, for exam-
ple, make the score equal to 0 when xlocal(Ys) = 0 and
xglobal(Ys) = 0.

The optimal selection of peers is out of the scope of this
paper. The simplest criteria for selecting peers would be to
choose m closest sensors, where m should be much smaller
than |S|. Once the peers of each sensor are obtained, it
is fairly easy to determine the corresponding reference sen-
sors σ. In practice, however, one can consider σ to be the
set of all sensors, without affecting any incentive properties.
Namely, it suffices that xglobal(x) converges to Pr(Xs =
x|Γ), which is for σ ≈ S naturally satisfied in the considered
setting.

As an example, consider a sensor s and a binary mea-
surement space {x, y} representing low and high levels of
pollution, respectively. Suppose that sensor s observes x
and believes that the frequency of reports on a global scale
is xglobal(x) = 0.2 and xglobal(y) = 0.8, while on a local scale
it is xlocal(x) = 0.4 and xlocal(y) = 0.6. These beliefs are
consistent with the Bayesian updating. Clearly, a constant
score to a sensor that provides a report consistent with a
report of its random peer (e.g. see [11]) would incentivize
sensor s to report y. However, the logarithmic PTS score
incentivizes sensor s to report x since log 0.4

0.2
> log 0.6

0.8
.

In the following subsection we show several important
properties of our mechanism. First, the novel mechanism is
incentive compatible, i.e. it admits truthful reporting as an
equilibrium with expected payoff greater than 0. What dis-
tinguishes our mechanism from other peer prediction mech-
anisms is that it allows agents to have both different prior
beliefs and non-binary measurement space. Next, we show
that any heuristic reporting equilibrium, in which sensors do
not perform measurements, result in expected payoff equal
to 0. Moreover, if sensor s reports heuristically, while other
sensors are honest, it expects negative payoff. Finally, we
analyze collusive strategies and show that they are not prof-
itable, i.e. they do not lead to higher payoff than truthful
reporting.

5.1 Truthful Reporting
The first property we show is incentive compatibility of

the logarithmic PTS. Before providing a formal proof, we
describe how one can see from the properties of the loga-
rithmic scoring rule that truthful reporting is an equilibrium
strategy.

Consider a sensor s and assume other sensors are honest.
It can be shown that logarithm of ratio xlocal(x̃)

xglobal(x̃)
from sensor

s’s perspective converges to:

lim
|P |,|σ|→∞

log
xlocal(x̃)

xglobal(x̃)
= log

Pr(Xs = x̃|Λs,Γ)

Pr(Xs = x̃|Γ)

where x̃ is sensor s’s report. Using Bayes’ rule we obtain:

lim
|P |,|σ|→∞

log
xlocal(x̃)

xglobal(x̃)
= log

Pr(Λs|Xs = x̃,Γ)

Pr(Λs|Γ)

= logPr(Λs|Xs = x̃,Γ) + c

where c does not depend on report x̃. The score has one
indicative feature: sensor s is scored based on how well it
predicts local state Λs given global state Γ. More precisely,

log xlocal(x̃)
xglobal(x̃)

is related to the logarithmic score of the poste-

rior belief of a sensor whose measurement is equal to x̃. The
true belief of sensor s is Pr(Λs|Xs = x,Γ), where x is its
measurement, so in order to be scored with its true beliefs,
the sensor should report x̃ = x. From the previous sections,
we know that the logarithmic score incentivizes agents to
report their true beliefs, which is in this case equivalent to
reporting true measurements.

The logarithmic PTS rewards a sensor based on how well
its measurement indicates the local properties of pollution,
rather than global ones. This is in accordance with the main
idea of the (original) BTS score: a sensor is not rewarded
based on how common her report is on the global scale, but
based on how surprisingly common her report is on the local
scale given the global state.

Finally, notice that c in the expression above is equal to
− logPr(Λs|Γ). This can be interpreted as if sensor s is
being scored based on how much her report improves the
knowledge about local state Λs. That is, if a sensor s did
not make any measurement, her belief regarding Λs given
global state Γ would be equal to Pr(Λs|Γ). Hence, the
difference between logPr(Λs|Xs = x,Γ) and logPr(Λs|Γ)
represents the increase of the sensor’s knowledge about Λs
after performing a measurement. Furthermore, using the
same reasoning as above, we obtain that sensor s’s score is
in expectation positive: due to the properties of the loga-
rithmic score we know that − logPr(Λs|Γ) is in expectation
greater than − logPr(Λs|Xs = x,Γ) for sensor s whose be-
lief is equal to Pr(Λs|Xs = x,Γ). Putting it all together, we
have:

Theorem 1. The Logarithmic Peer Truth Serum is strictly
Bayes-Nash incentive compatible, with strictly positive ex-
pected payoffs in the truthful reporting equilibrium.

Proof. Consider a sensor s and assume other sensors are
honest. Reports from local histogram xlocal are condition-
ally independent given Λs and Γ, so we can apply the law
of large numbers to obtain:

lim
|P |→∞

xlocal(x) = Pr(Xs = x|Λs,Γ)

Next, consider reference sensors σ ⊂ S whose measurements
are conditionally independent of each other given Γ. Since
we assumed |S| >> |P | >> 1, it follows that |σ| can also be
large, so we choose one such σ. The reports of sensors in σ
are conditionally independent given Γ, hence we have that:

lim
|σ|→∞

xglobal(x) = Pr(Xs = x|Γ)

Therefore, the expected score of sensor s, who measured
Xs = x, for reporting Ys = y is equal to:

lim
|σ|,|P |→∞

∫
Λs,Γ

Pr(Λs,Γ|Xs = x) log
xlocal(y)

xglobal(y)
dΛsdΓ =∫

Λs,Γ

Pr(Λs,Γ|Xs = x) log
Pr(Xs = y|Λs,Γ)

Pr(Xs = y|Γ)
dΛsdΓ =∫

Λs,Γ

Pr(Λs|Xs = x,Γ) · Pr(Γ|Xs = x)·

· log
Pr(Λs|Xs = y,Γ)

Pr(Λs|Γ)
dΛsdΓ



where the last equality is due the chain rule for conditional
probabilities (the product of the probabilities) and the Bayes’
law (the term inside the logarithm). The equation can be
further reduced to:∫

Λs,Γ

Pr(Λs|Xs = x,Γ)Pr(Γ|Xs = x)·

· log
Pr(Λs|Xs = y,Γ)Pr(Λs|Xs = x,Γ)

Pr(Λs|Γ)Pr(Λs|Xs = x,Γ)
dΛsdΓ∫

Γ

Pr(Γ|Xs = x)[∫
Λs

Pr(Λs|Xs = x,Γ) log
Pr(Λs|Xs = y,Γ)

Pr(Λs|Xs = x,Γ)
dΛs

+

∫
Λs

Pr(Λs|Xs = x,Γ) log
Pr(Λs|Xs = x,Γ)

Pr(Λs|Γ)
dΛs]dΓ

which can be represented as:∫
Γ

f1(Γ)[−KL(Pr(Λs|Xs = x,Γ)||Pr(Λs|Xs = y,Γ))

+ f2(Γ)]dΓ

Since the only part that depends on the sensor’s report is
KL divergence KL(Pr(Λs|Xs = x,Γ)||Pr(Λs|Xs = y,Γ)),
and the KL divergence is strictly positive unless y = x due
to the stochastic relevance of Xs, we conclude that sensor s’s
score is in expectation maximized for y = x (honest report-
ing). Moreover, when sensor s is honest KL(Pr(Λs|Xs =
x,Γ)||Pr(Λs|Xs = y,Γ)) = 0. Notice that function f2 is also
aKL divergence: f2(Γ) = KL(Pr(Λs|Xs = x,Γ)||Pr(Λs|Γ)),
and, thus, is strictly positive. Hence, the expected payoff
of a sensor in honest reporting equilibrium is strictly posi-
tive.

5.2 Heuristic Reporting
Now we turn to the next important property of the loga-

rithmic PTS mechanism. Suppose that sensors agree to use
heuristic reporting strategy independent of their locations,
i.e. without performing measurements they report according
to a certain policy described by a distribution πheur. This
distribution can also include sensors colluding on a partic-
ular value. For example, if sensors collude and decide to
report x, the reporting distribution is equal to πheur(x) = 1
and πheur(y) = 0, ∀y 6= x.

In this case, the ratio xlocal(x)
xglobal(x)

converges to 1. The reason

is that sensors no longer provide reports that are informative
about variables Λs, i.e. they are uniform on a global scale.
The direct consequence is that the logarithmic PTS score is
equal to 0. One should note two important properties. First,
uninformed equilibria result in the expected payoff equal to
0, which is less than what sensors expect to obtain if they are
honest. This means that if sensing requires a certain amount
of effort, it is enough to appropriately scale the logarithmic
PTS score in order to incentivize sensors’ owners to make
measurements and report honestly. Second, simple collusive
strategies, such as all sensors reporting a certain value x, are
less profitable than honest reporting.

Theorem 2. In the Logarithmic Peer Truth Serum, heuris-
tic reporting equilibria result in zero expected payoff.

Proof. Consider a sensor s and assume other sensors
report according to a distribution πheur. From the law of

large numbers we have that:

lim
|P |→∞

xlocal(x) = πheur(x)

lim
|σ|→∞

xglobal(x) = πheur(x)

Therefore, the expected payoff for reporting y ∈ {z|πheur(z) >
0} is:

lim
|σ|,|P |→∞

log
xlocal(y)

xglobal(y)
= log

πheur(y)

πheur(y)
= log 1 = 0

One should also note that if a sensor s reports heuristi-
cally, its expected payoff when other sensors are honest is
negative. Namely, from the previous section we know that
in that case the score converges to:

lim
|P |,|σ|→∞

log
xlocal(x̃)

xglobal(x̃)

= logPr(Λs|Xs = x̃,Γ)− logPr(Λs|Γ)

However, sensor s’s belief regarding Λs is now Pr(Λs|Γ) be-
cause it does not make any measurement. Due to the proper-
ties of the logarithmic score, logPr(Λs|Γ) is in expectation
greater than logPr(Λs|Xs = x̃,Γ), which means that the
score of sensor s is in expectation negative.

Proposition 1. Consider a sensor s that uses heuris-
tic reporting strategy and suppose other sensors are honest.
Then, in the Logarithmic Peer Truth Serum, sensor s has a
negative expected payoff.

Proof. (Sketch) Consider a sensor s and assume all other
sensors are honest. Following the steps of Theorem 1 and
noting that sensor s’s belief regarding Λs given Γ is equal
to Pr(Λs|Γ), we obtain that sensor s’s expected score for
reporting Ys = y is equal to:∫

Γ

Pr(Γ)

∫
Λs

Pr(Λs|Γ) · log
Pr(Λs|Xs = y,Γ)

Pr(Λs|Γ)
dΛsdΓ

=

∫
Γ

Pr(Γ) · [−KL(Pr(Λs|Γ)||Pr(Λs|Xs = y,Γ))]dΓ

Since the KL divergence is positive, the expected score is
negative.

5.3 Misreporting
In the previous sections we have seen that truthful report-

ing achieves higher payoff than heuristic reporting, which
means that the logarithmic PTS can be scaled to cover
the costs of sensing. In this section, we further investigate
whether sensors can achieve a greater payoff if their collusion
strategies are based on their observations. We restrict our
attention to misreporting that can be defined via function
ρ : {x, y, z, ...} → {x, y, z, ...} that maps measurements to
reports. Notice that function ρ is not necessarily a bijective
function, i.e. for two different measurements x and y, re-
porting strategy ρ can output the same report ρ(x) = ρ(y).1

We first show that truthful reporting is at least as good as
any other misreporting strategy defined by function ρ.

1Since ρ is a mapping from finite set of values {x, y, z, ...}
to the same set of values {x, y, z, ...}, ρ is a bijection if and
only if it is an injection.



Theorem 3. In the Logarithmic Peer Truth Serum, a
misreporting strategy profile defined by a function
ρ : {x, y, z, ..} → {x, y, z, ...} is not in expectation more prof-
itable than truthful reporting.

Proof. (Sketch) Consider a sensor s and assume other
sensors are reporting according to a function ρ. The ex-
pected frequency of reports equal to z that come from the
sensors located in the vicinity of sensor s is:∑
y|ρ(y)=z

Pr(Xs = y|Λs,Γ) = Pr(Xs ∈ {y|ρ(y) = z}|Λs,Γ)

Similarly, we obtain for the expected frequency of reports
equal to z on the global scale:∑

y|ρ(y)=z

Pr(Xs = y|Γ) = Pr(Xs ∈ {y|ρ(y) = z}|Γ)

From the law of large numbers we have that:

lim
|P |→∞

xlocal(z) = Pr(Xs ∈ {y|ρ(y) = z}|Λs,Γ)

and

lim
|σ|→∞

xglobal(z) = Pr(Xs ∈ {y|ρ(y) = z}|Γ)

Furthermore, using Bayes’ rule, we obtain:

lim
|σ|,|P |→∞

xlocal(z)

xglobal(z)
=
Pr(Λs|Xs ∈ {y|ρ(y) = z},Γ)

Pr(Λs|Γ)
(1)

An analysis equivalent to the one in Theorem 1, gives us that
the expected score of sensor s, who observed x, for reporting
ρ(x) is equal to:∫

Γ

f1(Γ)[−KL(Pr(Λs|Xs = x,Γ)||

Pr(Λs|Xs ∈ {y|ρ(y) = ρ(x)},Γ)) + f2(Γ)]dΓ (2)

Since KL divergence KL(Pr(Λs|Xs = x,Γ)||Pr(Λs|Xs ∈
{y|ρ(y) = ρ(x)},Γ)) is non-negative, expression (2) cannot
be larger than

∫
Γ
f1(Γ) · f2(Γ)dΓ, which is equal to the ex-

pected payoff for truthful reporting (see the proof of Theo-
rem 1).

The intuition behind this result can be seen from expres-
sion (1), which implies that sensor s’s score converges to:

lim
|P |,|σ|→∞

log
xlocal(z)

xglobal(z)

= logPr(Λs|Xs ∈ {y|ρ(y) = z},Γ) + c

where z = ρ(x), x is sensor s’s measurement, and c does
not depend on report z. Due to the properties of the loga-
rithmic scoring rule, the expected value of logPr(Λs|Xs ∈
{y|ρ(y) = z},Γ) cannot be greater than the expected value
of logPr(Λs|Xs = x,Γ), which is achieved when ρ(x) = x.
This means that truthful reporting is at least as good as
any other misreporting strategy defined by ρ. Notice that
truthful reporting does not require any special coordination
among sensors - the coordination is directly provided in a
form of their measurements. That is, while sensors can col-
lude by misreporting certain values, such collusive behaviour
is hard to coordinate and it does not lead to higher payoff.

Theorem 3 does not state if misreporting strategies de-
fined by a function ρ can achieve payoff equal to the one
obtained for truthful reporting. The next result shows that
this happens when ρ is a bijection, and only in that case.

Proposition 2. In the Logarithmic Peer Truth Serum,
a misreporting strategy profile ρ : {x, y, z, ..} → {x, y, z, ...}
achieves the same expected payoff as truthful reporting if and
only if ρ is a bijective function.

Proof. (Sketch) When ρ is a bijection, {y|ρ(y) = ρ(x)} =
{x}, so distributions Pr(Λs|Xs ∈ {y|ρ(y) = ρ(x)},Γ) and
Pr(Λs|Xs = x,Γ) are equal, and, hence, the divergence
KL(Pr(Λs|Xs = x,Γ)||Pr(Λs|Xs ∈ {y|ρ(y) = ρ(x)},Γ)) in
expression (2) is equal to 0. This is true for any bijective ρ,
which means that the payoff is in expectation equal to what
sensors expect to obtain in truthful reporting equilibrium.
When ρ is not a bijection, there exists a measurement x for
which {y|ρ(y) = ρ(x)} ⊃ {x}, and, by stochastic relevance,
KL(Pr(Λs|Xs = x,Γ)||Pr(Λs|Xs ∈ {y|ρ(y) = ρ(x)},Γ)) >
0, implying the strictly lower expected payoff than for honest
reporting.

As an example consider a sensor s and a ternary measure-
ment space {x, y, z} representing low, medium and high lev-
els of pollution, respectively. Suppose that sensor s observes
x and believes that the frequency of reports on a global scale
is xglobal(x) = 0.2, xglobal(y) = 0.5 and xglobal(z) = 0.3,
while on a local scale it is xlocal(x) = 0.3, xlocal(y) = 0.6
and xlocal(z) = 0.1. If sensors decide to report honestly,
sensor s expects to obtain log( 0.3

0.2
) ≈ 0.4. Now, suppose

sensors collude and they decide to report as follows:

• When they measure x or y, they report x.

• When they measure z, they report z.

In other words, the reporting function is defined as: ρ(x) =
x, ρ(y) = x, ρ(z) = z. In this case, sensor s expects to
obtain log( 0.3+0.6

0.2+0.5
) = log( 0.9

0.7
) ≈ 0.25, which is less than in

the honest reporting equilibrium.

6. SIMULATION
We examine the characteristics of the logarithmic PTS us-

ing realistic data of Nitrogen Dioxide (NO2) concentrations
over the city of Strasbourg. The data consists of both real
measurements collected by ASPA2 and estimations of pol-
lution from the physical model ADMS Urban V2.3 [5]. In
total, the data set contains concentrations of NO2 for each
hour, expressed in parts per billion (ppb), at 116 different lo-
cations over a period of four weeks. The locations are placed
as shown in Figure 1 and in the following text are referred
to as sensors.

Although the initial measurements take values in contin-
uous domain, we discretize it using four levels of pollution
defined as:

• low : concentrations 0− 20 ppb;

• medium: concentrations 20− 40 ppb;

• high: concentrations 40− 60 ppb;

• extra-high: concentrations 60−∞ ppb.

Each hour, sensors report the measured level of pollution
to the center and are rewarded with the logarithmic PTS
mechanism. As a criterion for peer selection, we consider
distance and define peers of a certain sensor as 15 closest

2www.atmo-alsace.net
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Figure 1: Sensor placement in Strasbourg urban
area

sensors. Namely, with 15 sensors, one can obtain fairly good
insight in localized aspects of pollution, while satisfying the
condition that the number of peers is significantly smaller
than the total number of sensors. Local histogram xlocal is
for a sensor s calculated based on the reports of its 15 peers.
Global histogram xglobal includes reports of all sensors, ex-
cept for the sensor s’s report. Moreover, both histograms
are smoothed with the Laplace (additive) smoothing oper-
ator using parameters αlocal = 10−4 and αglobal = 10−3

(parameters reflect that xglobal is calculated based on ap-
proximately 8 times more reports than xlocal).

To demonstrate the correctness of our results, we examine
four different reporting strategies and evaluate their perfor-
mance by analyzing the average scores of sensors. The four
strategies are defined as follows:

• truthful : All sensors are honest.

• collude: Sensors collude so that those who observe low
or medium report low, while those who observe high
or extra− high report high.

• colludeLow : All sensors collude and report low.

• random: A sensor whose score is being calculated re-
ports randomly with probabilities Pr(low) = · · · =
Pr(extra−high) = 0.25; while others sensors are hon-
est.

• randomAll : All sensors report randomly with proba-
bilities Pr(low) = · · · = Pr(extra− high) = 0.25.

The statistic of the average payoffs is shown in Table 1.
These payoffs can be scaled so that the incentives take pos-
itive values and cover the cost of sensing.

As expected, random reporting strategies on average lead
to non-positive scores. When a single sensor reports ran-
domly, while others are honest, its expected payoff is strictly
negative, confirming Proposition 1. When all sensors re-
port randomly, the average payoffs are more concentrated
around 0, which is in accordance with Theorem 2. Notice
that by Theorem 2, randomAll strategy should lead to 0 ex-
pected payoff. In our experimental setup, however, we are

Table 1: Average payoffs
Strategy mean min max
truthful 0.037 -1.153 0.291
collude 0.014 -0.27 0.106

colludeLow 0 0 0
random -0.876 -1.631 -0.36

randomAll -0.228 -0.362 -0.123

Strategy median 1st quartile 3rd quartile
truthful 0.047 -0.017 0.102
collude 0.019 -0.009 0.039

colludeLow 0 0 0
random -0.823 -1.075 -0.673

randomAll -0.228 -0.258 -0.19

dealing with finite number of sensors, so histograms xglobal
and xlocal are not necessarily equal to each other. This
imbalance produces negative average scores because of non-
linearity of log function.

Colluding on a single value results in payoff equal to 0, and
this trivially follows from the structure of the score. Collu-
sion strategy collude has lower mean of the average payoffs
than truthful reporting. Moreover, a careful inspection of
medians and quartiles shows that such collusion is worse
than truthful reporting for the majority of sensors. Namely,
median, third quartile and maximum are greater for truthful
reporting than for collude strategy.

To inspect why minimal and maximal average of sensors’
payoffs significantly differ for truthful strategy, we show the
reports of the corresponding sensors: sensor 103, that has
the worst average payoff (-1.153), and sensor 64, that has
the best average payoff (0.291). The locations of the sen-
sors are shown in Figure 1, along with the locations of their
peers. We give for each sensor: the histogram of the sen-
sor’s reports, the average local histogram x̄local, the average
global histogram x̄global.
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Figure 2: Histograms of the worst sensor

Figures 2 and 3 clearly indicates the main differences be-
tween sensors 103 and 64. Sensor 103 often reports a value
that is not as common in the local histogram as expected by
the global histogram, while sensor 64 does the opposite - it
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Figure 3: Histograms of the best sensor

reports a value that is surprisingly common. Since the loga-
rithmic PTS assigns a higher scores to reports that are more
common than expected, it is clear that sensor 103 should ob-
tain much lower payoff than sensor 64.

The setting considered in this paper assumes that the net-
work of senors is dense. We can further investigate how ro-
bust the logarithmic PTS is when the density of the sensor
network decreases. To do so, we randomly sample subsets
of sensors of different sizes (100, 80, 60 and 40 sensors) on
daily basis (i.e. each day a different subset is chosen), and we
calculate the median of average payoffs. As already noted,
the median of average payoffs reflects how good a reporting
strategy is for the majority of the sensors. In addition to
reducing the number of sensors, we also reduce the number
of peers for each sensor. For example, in a random subset
of 80 sensors, the set of peers of a certain sensor contains 11
closest sensors.

The detailed results are shown in Table 2. We can see
that truthful reporting remains the optimal strategy until
the number of sensors decreases to 40, which represents a
critical value where collusive strategies colludeLow and col-
lude become more profitable than truthfulness. This can be
explained by the low amount of information used to gener-
ate histograms (xlocal is constructed from only 7 reports).
In colludeLow and collude strategies, sensors report one and
two levels of pollution respectively, so these strategies are
less susceptible to random variations in measurements than
truthful reporting, where all four levels of pollution are re-
ported. We can make a similar observation for randomAll
strategy, for which the median of average payoffs diverges
from 0 (the expected payoff) as the number of sensors de-
creases.

Table 2: Median of average payoffs
Strategy Num. sensors / Num. peers

100/13 80/11 60/9 40/7
truthful 0.04 0.03 0.01 -0.007
collude 0.02 0.01 0.003 -0.0003

colludeLow 0 0 0 0
random -0.81 -0.86 -0.84 -0.99

randomAll -0.33 -0.47 -0.74 -1.19

As we can see from tables 1 and 2, provided that other
sensors are honest, a sensor who reports randomly receives
relatively large negative payoff, while for truthful reporting
it receives relatively small positive payoff. However, a sim-
ple scaling of the the logarithmic PTS can reverse the situa-
tion, making revenue for random reporting slightly negative,
while revenue for truthful reporting highly positive. The
scaling is done by multiplying the logarithmic PTS score
with a constant a > 0 and adding to it a constant payment
b. For example, by additionally rewarding all the sensors
with b = 0.8, the median of average payoffs in Table 1 for
truthfulness becomes 0.847, while for random strategy it
becomes −0.023. This way of scaling the payments does
not only incentivize honest reporting, but it also discour-
ages random reporters to participate. Notice that param-
eters a > 0 and b should not depend on sensors’ reports.
In practice, however, one can easily infer their appropriate
values using simulations, such as the one presented here.

7. CONCLUSION
In this paper, we have constructed an incentive mechanism

that can be applied in a participatory sensing scenario where
a large group of sensors make measurements of a spatially
distributed phenomenon. The basic idea of our mechanism
is to reward sensors based on the statistical significance of
their reports. Because of the way we measure the statisti-
cal significance, the mechanism has several desirable prop-
erties important for its use in participatory sensing settings.
The mechanism is minimal in a sense that it elicits sensors’
measurements without requiring them to report additional
information. Moreover, it does not require sensors to have
a common prior belief in order to achieve incentive compat-
ibility. Furthermore, the mechanism is collusion resistant,
meaning that collusive strategies, such as heuristic (unin-
formed) reporting or misreporting, result in worse expected
payoffs than truthful reporting. Finally, we have tested our
mechanism in a realistic simulator and confirmed that its
robust game-theoretic properties hold.

The main direction of our future work would be to ana-
lyze if the logarithmic PTS score can be used for filtering
low quality sensors without having the access to the ground
truth, similar to how [17] applied the BTS to detect the best
experts. Namely, Proposition 1 tells us that a sensor who
reports randomly can expect to obtain a negative score, pro-
vided that the majority of participants is honest. By keeping
a track of sensors’ scores, we could determine which sensors
provide informative data and which sensors should be ex-
cluded when calculating the pollution map of a monitored
urban area.
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