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Abstract—We derive bounds on the expected loss for authenti-
cation protocols in channels which are constrained due to noisy
conditions and communication costs. This is motivated by a
number of authentication protocols, where at least some part
of the authentication is performed during a phase, lastingn
rounds, with no error correction. This requires assigning an
acceptable threshold for the number of detected errors and
taking into account the cost of incorrect authentication and
of communication. This paper describes a framework enabling
an expected loss analysis for all the protocols in this family.
Computationally simple methods to obtain nearly optimal values
for the threshold, as well as for the number of rounds are
suggested and upper bounds on the expected loss, holding
uniformly, are given. These bounds are tight, as shown by a
matching lower bound. Finally, a method to adaptively select
both the number of rounds and the threshold is proposed for a
certain class of protocols.

I. I NTRODUCTION

Traditionally [1], [2], authentication is assumed to be taking
place on an error-free channel, and error analysis is performed
separately from cryptographic analysis of protocols. However,
a number of authentication protocols have been proposed [3]–
[11], where at least some part of the authentication is per-
formed during a challenge-response phase lastingn rounds
with no error correction, due to a need to detect relay attacks
by timing delays. The noise necessitates the acceptance of
some responses which are not perfectly correct. In addition,
increasingn carries a significant cost. The problem is to strike
an optimal balance between the increased number of rounds,
the probability of falsely authenticating an illegitimateparty,
and failing to authenticate a legitimate party.

For example therapid-bit exchange phase in an RFID
distance-bounding protocol (i.e. [9]), satisfies these criteria.
The phase lastsn rounds, where an equal number of challenges
and responses are sent. Since there is no error correction
during that phase, some responses of a legitimate user may be
erroneous. This necessitates the use of a tolerance threshold
τ , such that if the number of erroneous responses is lower
thanτ , the communicating party is nevertheless authenticated.
In addition, while increasing the number of rounds decreases
the probability of incorrect authentication, it also increases
communication costs. The problem then is how to selectn, τ
in an optimal manner.

This paper1 performs an expected loss analysis of the
authentication problem. This is necessary, because of the non-
trivial cost of increasing the number of roundsn, the lack
of an error-free channel and the need to trade off optimally
the costs of incorrectly authenticating an illegitimate entity, or
failing to authenticate a legitimate one.

We place the problem in a decision-theoretic framework. We
assign a lossℓA to the event that we authenticate a malicious
party A—which we call theattacker—a lossℓU to the event
that we fail to authenticate a valid partyU—which we call the
user—and a lossℓB for each round of the challenge-response
phase, such that the total communication cost isnℓB . Adding
a non-negligible cost to the communications is of fundamental
importance in resource-constrained environments. Otherwise,
n can be made as large as necessary to make the probability
of authentication mistakes infinitesimal. Our goal is to select
n and τ so as to minimise theexpected loss EL of the
authentication system. This is achieved through a finite sample
analysis.

The paper is organised as follows. Section II introduces
notation and our framework. Section III contains theexpected
loss analysis under noise. In particular, Sec. III-A suggests
a method to calculate the threshold accompanied by finite
sample upper loss bounds and a matching lower bound, while
Sec. III-B provides a further loss bound by selecting an
near-optimal number of roundsn. These results only require
two reasonable assumptions: that the expected error of the
attacker is higher than that of the user and that the errors are
independent in each round, something that can be achieved
by appropriate protocol design. Section IV applies the above
analysis to a number of currently used protocols. Section V
suggests a high-probability method for estimating the channel
noise and presents the results of simulation experiments that
compare our choice of threshold with other approaches, based
on thresholds derived using asymptotic approximations. Fi-
nally, Sec. VI concludes the paper with a discussion of related
work. For completeness, the appendix provides some useful
auxiliary results regarding the finite sample and the asymptotic
derivations.

1Preliminary versions of this paper were published as arXiv:1009.0278 [12].
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II. PRELIMINARIES

We consider sequencesx = x1, . . . , xn with all xi in some
alphabetX and x ∈ Xn. We write X ∗ ,

⋃∞
n=0 Xn for

the set of all sequences. We use, to indicate a definition.
P(A) denotes the probability of eventA, while E denotes
expectations so thatE(X | A) =

∑

u∈Ω uP(X = u | A)
denotes the conditional expectation of a random variable
X ∈ Ω whenA is true. Finally,I {A} is an indicator function
equal to1 whenA is true and0 otherwise.

We consider additive-error challenge-response authentica-
tion protocols. In such protocols, a verifierV grants access
to a prover P, if the latter can demonstrate its identity
via possession of a shared secret. The protocol has three
phases: (i) An initialisation phase. (ii) Achallenge-response
phase, lastingn rounds, performed without error correction
under noisy conditions. (iii) A termination phase. During the
challenge-response phase the verifierV sendsn challenges
c1, . . . , cn, with ck ∈ X , to the proverP, which responds
by transmittingn responsesr1, . . . , rn, with rk ∈ X . We
use c = (ck)

n
k=1, and r = (rk)

n
k=1 to denote the complete

challenge and response sequences respectively. The verifier V
uses an error functionE : X ×X → [0, 1] to calculate an error
εi = E(ri, ci) for the i-th round. The errors when interacting
with a valid user may be non-zero due to noise constraints in
the channel. However, as the attacker has to resort to guessing
the responses, the expected error of the attacker should be
higher than that of the user.

In order to trade off false acceptances with false rejections,
we use a threshold valueτ , such that a prover is accepted
if and only if the total error observed is smaller thanτ . The
verifier V calculates the total errorε ,

∑n
i=1 εi, and rejects

the proverP, if and only if ε ≥ τ .
The relation ofε to the challenge and response stringsc

and r strongly depends on the protocol. In order to make
our analysis generally applicable, we make the following
assumption about the protocol.

Assumption 1. We assume there exists some pA ≤ E(εi | A),
a lower bound on the expected per-round error of the attacker
and some pU ≥ E(εi | U), an upper bound on the error of
a legitimate user. In addition, we assume that the protocol
is such that all errors are independently (but not necessarily
identically) distributed.

These bounds depend on the noise during the challenge-
response phase and on the protocol under consideration. We
shall return to them in section IV.

III. E XPECTED LOSS ANALYSIS

We now specify our potential losses. For every round of the
challenge-response phase, we suffer lossℓB , due to the cost
in time and energy of transmission. In addition, we suffer a
loss of ℓA for each false acceptance and a lossℓU for each
false rejection.2 Given that we performn rounds, the total

2These losses are subjectively set to application-dependent values. Clearly,
for cases where falsely authenticating an attacker the impact is severe,ℓA
must be much greater thanℓU .

loss when the proverP is either the legitimate userU or the
attackerA is given by:

L =











nℓB + ℓU , if ε ≥ τ andP = U

nℓB + ℓA, if ε < τ andP = A

nℓB , otherwise.

(1)

Armed with this information, we can now embark upon an
expected loss analysis. We wish to devise an algorithm that
guarantees anupper bound on the expected lossEL of the
authentication system. To start with, we note that the expected
loss when the communicating party is an attackerA or the user
U , is given respectively by:

E(L | A) = nℓB + P(ε < τ | A) · ℓA + P(ε ≥ τ | A) · 0 (2)

E(L | U) = nℓB + P(ε < τ | U) · 0 + P(ε ≥ τ | U) · ℓU (3)

The expected loss is in either case bounded by theworst-case
expected loss:

L , max {E(L | A),E(L | U)} ≥ EL (4)

If we can find an expression that bounds bothE(L | A) and
E(L | U), we automatically obtain a bound on the expected
loss,EL.

A. Choice of threshold

We want a thresholdτ such that no matter whether the
proverP is the attackerA or the legitimate userU the expected
loss E(L | P) is as small as possible. As weincrease the
thresholdτ , E(L | P = U) decreases, while E(L | P = A)
increases and vice-versa. Intuitively, to minimise the worst-
case expected loss, we can useτ such thatE(L | P = A, τ) =
E(L | P = U, τ). A thresholdτ minimising an upper bound
on the worst-case expected loss is given in Theorem 1. As
an intermediate step, we obtain a bound on the worst-case
expected loss forany given thresholdτ . Formally, we can
show the following:

Lemma 1. Let εi ∈ [0, 1] be the error of the i-th round. If, for
all i > 0, it holds that E(εi | A) ≥ pA and E(εi | U) ≤ pU ,
for some pA, pU ∈ [0, 1] such that npU ≤ τ ≤ npA, then:

L(n; τ) , nℓB +max
{

e−
2
n
(npU−τ)2ℓU , e

− 2
n
(npA−τ)2ℓA

}

≥ max {E(L | A),E(L | U)} ≥ EL (5)

Proof: The expected loss whenP = A, is simply:

E(L | A) = nℓB + P

(

∑

i

εi < τ
∣

∣

∣
A

)

ℓA

≤ nℓB + P

(

∑

i

εi − nE(εi | A) < τ − npA

∣

∣

∣
A

)

ℓA

≤ nℓB + e−
2
n
(npA−τ)2ℓA,

the last two steps used the fact thatE(εi | A) ≥ pA and the
Hoeffding inequality (18). Specifically, in our case, Lemma 3
(page 7) applies withXi = ǫi. Then, it is easy to see that
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µi = E(εi | A) for all i and bi − ai = 1, so P(ǫ < npA +
nt | A) ≤ e−2nt2 . By setting τ = npA + nt, we obtain
t = (τ−npA)/n, which we can plug into the above inequality,
thus arriving at the required result.

The other case,P = U , is handled similarly and we
conclude thatE(L | U) ≤ nℓB + e−

2
n
(npU−τ)2ℓU .

The given upper bound is tight, as can be seen by the
following lemma, which proves a matching lower bound for
the example of Bernoulli-distributed errors.

Lemma 2. Modifying our assumptions slightly, let εi ∈ {0, 1}
be the Bernoulli-distributed error of the i-th round, such that,
for all i > 0, it holds that P(εi | A) = pA and P(εi | U) = pU ,
for some pA, pU ∈ [0, 1] such that npU ≤ τ ≤ npA, then:

EL ≥ min {E(L | A),E(L | U)}
≥ nℓB +

(n

τ

)τ

min
{

ℓAp
τ
A(1− pA)

n−τ , ℓUp
τ
U (1− pU )

n−τ
}

(6)

Proof: The expected loss whenP = U , is simply:

E(L | U) = nℓB + P

(

∑

i

εi ≥ τ
∣

∣

∣
U

)

ℓU

≥ nℓB + P

(

∑

i

εi = τ
∣

∣

∣
U

)

ℓU

= nℓB +

(

n

τ

)

pτU (1− pU )
n−τ ℓU

≥ nℓB +
(npU

τ

)τ

(1− pU )
n−τ ℓU

The other case,P = A, is handled similarly and we conclude
thatE(L | A) ≥ nℓB +

(

npA

τ

)τ
(1− pA)

n−τ ℓA
To see that the upper and lower bounds match, consider that

P = U and τ = nc with c < 1. Then Lemmas 1 and 2 give
us:

nℓB + e−
2
n
(npU−τ)2ℓU ≥ nℓB +

(npU
τ

)τ

(1− pU )
n−τ ℓU

e−
2
n
(npU−τ)2 ≥

(npU
τ

)τ

(1− pU )
n−τ

e−2(pU−c)2n ≥ e[c ln
pU
c

+(1−c) ln(1−pU )]n

Thus, the upper and lower bounds given for the expected loss
(EL) are of the same order with regard ton.

Having bounded the loss suffered when choosing a specific
threshold, we now choose a thresholdτ̂∗n that minimises the
above bound for fixedn. In fact, we can show that such a
threshold results in a particular upper bound on the expected
loss.

Theorem 1. Let ρ , ℓA/ℓU and select

τ = τ̂∗n ,
n(pA + pU )

2
− ln ρ

4∆
(7)

If npU ≤ τ ≤ npA, then the expected loss EL is bounded by:

E(L | n, τ̂∗n) ≤ L1(n) , nℓB + e−
n
2 ∆2 ·

√

ℓAℓU . (8)

with ∆ , pA − pU .

Proof: Substitute (7) in the first exponential of (5) to
obtain:

e−
2
n
(npU−τ̂∗)2ℓU = e−

n
2 ∆2

e−
ln2 ρ

8n∆2

√

ℓAℓU .

It is easy to see that the exact same result is obtained by
substituting (7) in the second exponential of (5). Thus, both
E(L | A) andE(L | U) are bounded by the same quantity and
consequently, so ismax {E(L | A),E(L | U)}. Thus,

L(n, τ̂∗n) ≤ nℓB + e−
n
2 ∆2√

ℓAℓU ,

where we simplified the bound by noting thatln
2 ρ

8n∆2 > 0.
The intuition behind the algorithm and the analysis is that

it is possible to bound the probability thatA makes less errors
than expected, or thatU makes more than expected. For this
reason, thêτ∗n chosen in the theorem must lie betweennpU
andnpA. This also implies a lower bound on the number of
roundsn.

B. Choice of the number of rounds

Using similar techniques to those employed for obtaining
a suitable value for the threshold, we now indicate a good
choice for the number of roundsn and provide a matching
bound on the expected loss.

Theorem 2. Assume ℓA, ℓU , ℓB > 0. If we choose τ = τ̂∗n and

n = n̂∗ ,

√
1 + 2CK − 1

C
, (9)

where C = ∆2 and K =
√
ℓAℓU/ℓB , then the expected loss

EL is bounded by:

E(L | τ̂∗n, n̂∗) ≤ L2 ,
√

8K/C · ℓB =

√
8ℓB(ℓAℓU )

1/4

∆
.

(10)

Proof: We shall bound each one of the summands of (8)
by
√

2K/C · ℓB . For the first term we have:

nℓB =

√
1 + 2CK − 1

C
ℓB ≤

√
1 + 2CK

C
ℓB

≤
√
2CK

C
ℓB =

√

2K

C
ℓB .

For the second term, by noting thatex ≥ 1 + x, we have:

√

ℓU ℓA · e−n
2 ∆2 ≤

√
ℓU ℓA

1 + n
2∆

2
=

KℓB

1 + nC
2

=
2KℓB

1 +
√
1 + 2CK

≤ 2KℓB√
1 + 2CK

≤ 2KℓB√
2CK

=

√

2K

C
ℓB .

Summing the two bounds, we obtain the required result.
This theorem proves that ourworst-case expected loss L

grows sublinearly both with increasing round cost (with rate
O(ǫ1/2)) and with increasing authentication costs (with rate
O(ǫ1/4)). Furthermore, theexpected loss is bounded symmet-
rically for both user and attacker access. Finally, there isa
strong dependence on the margin∆ between the attacker and
the user error rates, which is an expected result.
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IV. A NALYSIS OF RFID THRESHOLDED PROTOCOLS

Currently, the most well-known protocols employing an
authentication phase without any error correction and under
resource constraints areRFID distance bounding protocols.
For that reason, we shall examine the properties of two such
protocols, for which it is possible to derive expressions for
pA, pU , given a symmetric channel noise.

More precisely, due to noise in the physical medium, in any
exchange betweenV andP, the former may send a symbolx ∈
X , while the latter may receive a symbolx̂ ∈ X such thatx 6=
x̂. We shall denote the probability of erroneous transmissionin
the data layer as:ω , P(x̂ = j | x 6= j, x 6= x̂). For simplicity,
we shall only treat the case of symmetric channel noise such
that:P(x̂ = y | x 6= y) = 1

|X |−1 , ∀y 6= x, x, y ∈ X .
The SWISS-KNIFE protocol [11] and the variant HITOMI [7]

are additive-error authentication protocols satisfying our as-
sumptions. It is easy to show (for details see [7]) that, for
those two protocols, under channel noiseω, the expected error
boundspA, pU are given by:pA = ω+1

2 , pU = 2ω, where we
note in passing thatpA ≥ pU and soω ≤ 1

3 . Finally, by
substituting∆ = pA − pU = 1−3ω

2 in (8), we obtain the
following bound for SWISS-KNIFE and HITOMI :

EL ≤ nℓB + e−
n(1−3ω)2

8 ·
√

ℓAℓU , (11)

We have performed a number of experiments to test the
efficacy of these protocols, when used in conjunction with our
suggested, as well as the optimal values of the threshold and
number of rounds. In all of the experiments shown here, we
chose the following values for the losses:ℓA = 10, ℓU = 1,
ℓB = 10−2.

Figure 1(a) depicts the bound (11) on the expected loss, as
well as the actualEL calculated via the binomial formula,
when the threshold̂τ∗n, calculated from (7), is used. We plot
both the expected loss and the bound for two different channel
noise levelsω ∈

{

10−1, 10−2
}

, where the number of rounds
n varies from1 to 256. Obviously, the bound is greater than
the actual expected loss, while it approaches it exponentially
fast asn increases. In addition, the losses are higher when the
amount of noise increases.

Furthermore, we can see that there are minimising values
of n for all cases. While they do not coincide for the bound
and the actualexpected loss, they are within a factor of two of
each other. Finally,̂n∗, the value ofn minimising the bound,
is always greater thann∗ , argminn maxP∈A,U E(L | P, n),
the value ofn that minimises theworst-case expected loss.
Since the probability of incorrect authentication always de-
creases with increasingn, this implies that any additional
losses incurred by usinĝn∗ is due to transmission costs only.

Figure 1(b) examines the effect of noise in more detail.
In particular, it depicts theworst-case expected loss for the
optimal number of roundsn∗, denoted byE(L | n∗) in the
legend. This is of course smaller thanE(L | n̂∗), the loss
suffered by choosinĝn∗, with the gap becoming smaller for
larger error rates. Since when this occurs, theexpected loss is

0.1

1
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0 20 40 60 80 100 120

L1(n), ω = 10−2

maxP E(L | P, n), ω = 10−2
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E
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d
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(a) TheExpected Loss EL and the bound on theExpected Loss L1 vs. the
number of bitsn exchanged during the rapid single bit exchange for various
values of channel noiseω.

0.1

1

10

100

0 0.05 0.1 0.15 0.2 0.25 0.3

maxP E(L | P, n∗)
maxP E(L | P, n̂∗)

L1(n̂
∗)
L2

ω (channel noise)

E
xp

ec
te

d
lo

ss

(b) The worst-case expected LossL and the boundsL1 and L2 from
theorems 1 and 2 respectively vs. the channel error rateω.

Fig. 1. Comparison of all losses.

very close toL1, this implies that the bound of the Theorem 1
can be further tightened for smallω.

V. ESTIMATING ω

In this section, we discuss how it is possible to calculate
the channel error rateω, which is used in the expressions for
pA, pU . This can be done by leveraging the coding performed
during the initial and final phases of the protocol. We assume
some coding functionΦ : Xm → X k, with k > m, and
a metricγ on X k (where usuallyX = {0, 1} and γ is the
Hamming distance) such that:

γmin , min {γ(Φ(x),Φ(y)) : x, y ∈ Xm, x 6= y} (12)

is the minimum (Hamming) distance between valid codewords.
For a givenx ∈ Xm, the source transmitsφ = Φ(x) and the
sink receiveŝφ, with φ, φ̂ ∈ Xn. As before, we assume that the
physical channel has a symmetric error rateω = P(φ̂i 6= φi),
whereφi denotes thei-th bit of φ. This is then decoded as
x̂ , argmin

{

γ(φ̂,Φ(y)) : y ∈ Xm
}

. Let θ be the number of
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errors in the strinĝφ, or more preciselyθ = γ(φ, φ̂). Let θ̂ ,

γ(Φ(x̂), φ̂) be the distance between the closest valid codeword
Φ(x̂) and the received̂φ. If θ < (γmin − 1)/2, thenθ = θ̂.

The crux of our method for estimatingω relies on the
number of errorsθ being less than(γmin−1)/2, in which case,
the estimated number of errorŝθ will equal θ. Let ω̂ , θ̂

n be
our empirical error rate. In that case, the expected empirical
error rate equals the true error rate. More formally:

E (ω̂ | θ ≤ (γmin − 1)/2) = ω. (13)

If θ > (γmin − 1)/2 then the protocol fails in any case, due
to decoding errors in the initial or final phases. If not, then
the above equation holds and we can obtain high probability
bounds forω via theHoeffding inequality (Appendix, Lemma
3). In particular, it is easy to show that, for anyδ ∈ [0, 1]:

P

(

|ω̂ − ω| ≥
√

ln 2/δ

2k

)

≤ δ, (14)

by substituting the square-root term into (18), and settingµi =
ω,
∑

Xi = θ̂, ai = 0, bi = 1. Consequently, for the SWISS-
KNIFE family of protocols the following values forpA and
pU hold with probability1− δ:

pA =
1 + ω̂

2
+

√

ln 2/δ

8k
, pU = 2ω̂ −

√

2 ln 2/δ

k
. (15)

Experimental investigations presented in the next sectionin-
dicate that this choice has good performance in terms of
expected loss.

A. Evaluation Experiments

We have performed some experiments to evaluate our
methods in a more realistic setting, involving an RFID dis-
tance bounding protocol with arapid-bit exchange phase. We
perform simulations for two cases: Firstly, when alegitimate
user U is trying to get authenticated and secondly, when an
adversary A is trying to perform a mafia fraud attack [13].
We have estimated theworst-case expected loss by running
104 experiments for each case, obtaining a pair of estimates
Ê(L | A), Ê(L | U) by averaging the lossL, as defined in
(1), incurred in each experiment and taking the maximum of
the two. In all of the experiments shown in this section, we
chose the following values for the losses:ℓA = 10, ℓU = 1,
ℓB = 10−2, while we usedk = 210 for the coded messages
in the initialisation phase.

The actual valuespA, pU depend onω, which is unknown.
We compare three methods for choosingpA, pU . Firstly,
guessing a valuêω for the channel noise. Secondly, using the
maximum likelihood noise estimatêω = θ̂/k. In both cases,
we simply useω̂ as described at the beginning of Sec. IV to
obtain pA, pU . In the third case, we use the high-probability
bounds (15) forpA, pU , with an arbitrary value ofδ.

In the first experiment, we use the nearly-optimal threshold
and number of rounds that we have derived in our analysis. In
the second experiment, we replace our choice of threshold with
a choice similar to that of Baignères et al. [14]. Their threshold

is derived via a likelihood ratio test, which is asymptotically
optimal (c.f. [15], [16]) but they do not consider specific
losses. Since in our case we have unequal lossesℓA and ℓU ,
we re-derive their threshold via a Bayesian test (to which a
Bayesian formulation of the Neymann-Pearson lemma [15]
applies) to obtain:

τ̃ =
n ln 1−pU

1−pA
− ln ρ

ln 1−pU

1−pA
− ln pU

pA

. (16)

For equal losses,ρ = 1, and τ̃ equals the threshold used
in [14]. Such tests have good asymptotic properties [15], [17].
Interestingly, for small∆, the form of τ̃ is similar to τ̂∗n: Let
p̄ such thatpA = p̄+∆/2 andpU = p̄−∆/2. Then (16) can
be approximated bỹτ∗ = np̄ − p̄(1−p̄)

∆ ln ρ. More details on
the derivation of (16) are given in Appendix B on page 7.

Figure 2 depicts theworst-case expected loss L as a
function of the actual noiseω. Figure 2(a) showsL using the
thresholdτ derived from ourexpected loss analysis (7), while
in Figure 2(b) we use the asymptotically optimal threshold
of (16). In both cases, we plotL, while the actual noiseω
is changing, for a number of different cases. Initially, we
investigate the evolution ofL for three arbitrarily chosen
valuesω̂ ∈ {10−1, 10−2, 10−3}. Additionally, we examine the
evolution of theworst-case expected loss, when the noise is
empirically estimated̂ω = θ̂/n and finally whenpA and pU
are calculated via equation (15) withδ ∈ {10−1, 10−2}.

As it can be seen in Figure 2, in all cases (using ours
Figure 2(a) or Baigǹeres et al. [14] threshold Figure 2(b))
the worst-case expected loss is very low for small values of
the actual noise and increases sharply when the actual noise
exceeds the value of10−1. It is interesting to see that when we
use the optimistic3 high probability estimates forpA, pU , we
obtain almost always better performance than simply guessing
the noise, or using the plain empirical estimateω̂ directly.
Furthermore, using the asymptotically optimal threshold (16),
we observe a deterioration in the results. Thus, our approach
results in a clearly dominating performance over other meth-
ods.

As mentioned in Sec. VI, the choice of the threshold by
Baigǹeres et al. [14] is only asymptotically optimal. Ours,
while not optimal, gives a worst-case expected loss guarantee
for any finite sample size. Thus, it has better performance
when the asymptotic approximation is not sufficiently good,
which occurs when both the number of roundsn and the gap
∆ are small.

VI. CONCLUSION

We have performed the first, to our knowledge, expected
loss analysis of additive error challenge-response authentica-
tion protocols under channel constraints. Such an analysis
is necessary, because of the inherent cost of increasing the
number of roundsn and the need to trade off optimally the

3Experiments with pessimistic high probability estimates for the noise
showed a significant increase in the number of rounds used, which resulted
in a higher expected loss.
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Fig. 2. The worst-case expected loss as a function of noise. We plot the evolu-
tion of the loss as noise changes, for a number of different cases. Firstly, for the
case where we arbitrarily assume a noise valueω̂ ∈ {10−1, 10−2, 10−3}.
Secondly, for an empirically estimated̂ω = k̂/n, and finally for pA, pU
calculated via equation (15) withδ ∈ {10−1, 10−2}.

costs of incorrectly authenticating an illegitimate entity, or
failing to authenticate a legitimate one, as well as the lack
of an error-free channel. In order to achieve this, we made the
assumption of bounds on the expected errors of a user and an
attacker. In addition, we assumed that these are independent
from errors in the previous rounds.4

The rapid-bit exchange phase considered in parts of this
paper was introduced in [3] to compute an upper bound on the
distance of the proverP from the verifierV. This is composed
of n challenge-responserounds, used to calculate a round-trip
time and thus place a bound on the distance. Subsequently,
a broad range ofdistance bounding protocols were proposed,
both for RFID [5], [7], [9]–[11], as well as other wireless
devices [6], [19], [20].

Hancke and Kuhn [9] were the first to indicate that since the
rapid-bit exchange phase is taking place in a noisy channel,

4Consequently, error probabilities drop exponentially fast, unlike the exam-
ples given in [18].

challenges and responses may be corrupted. Thus, a legitimate
user may fail to get authenticated. Their protocol (henceforth
HAKU), employedn rounds and authenticated any prover who
made a number of mistakesε less than an acceptance threshold
τ , so as to reduce the number of false rejections. Using the
binomial distribution and an assumption on the error rates
they give expressions for thefalse accept and false reject
probability as a function ofn and τ , but they provide no
further analysis. Nevertheless, they indicate that the number
of challenge-response roundsn in the rapid bit exchange
phase should be chosen according to the expected error rate.
Kim et al. [11] extend this approach with the SWISS-KNIFE

protocol by consideringthree types of errors. Finally [5], rather
than using a thresholdτ , proposed a protocol (henceforth
ECMAD) using an error correcting code (ECC). ECMAD,
which extends the MAD protocol [19], uses onlyk of the n
total rounds for the challenges and responses. The remaining
n−k rounds are used to transmit the(n, k) ECC. This has the
effect of achieving better security (in terms of false acceptance
rates) with the same number of roundsn.

All these approaches usen rounds in the noisy authen-
tication phase. However, they do not define the optimaln.
They simply state that the probability of authenticating a user
becomes much higher than the probability of authenticating
an attacker asn increases. However, a large value ofn
is incompatible with the requirements of many applications
and devices (i.e. high value ofn leads to high overhead
for resource-constrained devices). This can be modelled by
assigning anexplicit cost to every round, which should take
into account the transmission energy, computation and time
overhead. This cost has so far not been explicitly taken into
consideration.

Another work that is closely related to ours is [21], which,
given a required false acceptance and false rejection rate,
provides alower bound on the number of required rounds. This
analysis is performed for both HAKU and ECMAD. However,
it assumes that the number of roundsn would be large enough
for the binomial distribution of errors to be approximately
normal. Our analysis is more general, since it uses finite-
sample bounds that hold for any bounded error function.

Recently, Baigǹeres et al. [14] have given an analysis
on the related topic of distinguishing between a real and
a fake solver of challenge-response puzzles. More precisely,
they study CAPTCHA-like protocols and provide a threshold
which minimizes the probability of error in these protocols.
The main differences between the analysis presented in this
paper and [14] can be summarised below: (a) We perform an
expected loss analysis rather than an error analysis. (b) Our
bounds hold uniformly, while [14] uses an asymptotically op-
timal distinguisher. (c) We consider bounded errors ratherthan
{0, 1} errors for each challenge-response. (d) We additionally
propose a method to estimate channel noise. This is of course
not applicable in the context of [14], due to the different
setting.

A more general work on authentication under noisy condi-
tions was presented in [22]. This provided tight information-
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theoretic upper and lower bounds on the attacker’s success
in impersonation and substitution attacks, proving that it
decreased with noise. However, our analysis shows that, when
one considers losses due to communication overhead and false
rejections of users, the expected loss increases, which is a
natural result.

In this paper, we perform a detailedexpected loss analysis
for a general class of additive-error authentication protocols
in a noisy channel. The analysis is performed by assigning a
loss ℓB to each round, and lossesℓA, ℓU to false acceptance
and false rejection respectively.

We show how a nearly-optimal threshold̂τ∗n for a given
number of roundsn can be chosen and giveworst-case bounds
on theexpected loss for that choice. Thus, the bounds hold no
matter if the party that attempts to get authenticated is either a
legitimate userU or an attackerA. This extends our previous
work [7], which proposed a newdistance bounding protocol
(HITOMI ) and only calculated a value for the thresholdτ ,
without providing any bounds.

We also show how a nearly-optimal number of roundsn̂∗

can be chosen and give further bounds on theexpected loss.
The bounds hold forany bounded error function, and not only
for {0, 1} errors.5 Furthermore, they are valid for anyn, since
they are based on probability inequalities for a finite number
of samples.6 Thus, they are considerably more general to the
bounds of [21].

Finally, we provided high-probability estimates for the
current noise level in the channel by leveraging the coding
performed in the initial and final phases of the protocol, which
takes place in a coded channel. This enables us to significantly
weaken assumptions on knowledge of the noise level in the
channel and in turn, provide an authentication algorithm which
has low expected loss with high probability. Experimentally,
we obtain uniformly superior results to guessing or direct
empirical noise estimates. Finally, we repeated those exper-
iments with an asymptotically optimal threshold similar to
that used by Baigǹeres et al. [14]. Our results indicate a
significant improvement through the use of a threshold with
uniform, rather than asymptotic, guarantees. Consequently,
it is our view that algorithms motivated by an asymptotic
analysis should be avoided in the finite-sample regime of most
challenge-response authentication protocols.

Our analysis is particularly significant for areas of commu-
nications where challenges and responses are costly and where
there exists significant uncertainty about the correctnessof any
single response.
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APPENDIX

A. Useful formulas

If X1, . . . , Xn are independent Bernoulli random variables
with Xk ∈ {0, 1} andP(Xk = 1) = µ for all k, then

P

(

n
∑

k=1

Xk ≥ u

)

=

u
∑

k=0

(

n

k

)

µk(1− µ)n−k. (17)

This probability can be bounded viaHoeffding’s inequality
[23]:

Lemma 3 (Hoeffding). For independent random variables
X1, . . . , Xn such that Xi ∈ [ai, bi], with µi , EXi and t > 0:

P

(

n
∑

i=1

Xi ≥
n
∑

i=1

µi + nt

)

≤ exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

P

(

n
∑

i=1

Xi ≤
n
∑

i=1

µi − nt

)

≤ exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

.

(18)

B. On Bayesian hypothesis tests

One way to obtain an asymptotically optimal threshold is to
employ a Bayesian hypothesis test [15]. This requires defining
a prior probability on the possible hypotheses. In our case,the
hypothesis set isH = {A,U}, on which we define a prior
probability π. For {0, 1} errors, the probability of observing
ε errors out ofn observations is given byP(ε | A) and
P(ε | U) for the attacker and user respectively and it follows
a binomial distribution with parameterspA, pU respectively.
Given an observed errorx, the posterior probability of any
hypothesish ∈ H is:

π(h | ε = x) =
P(ε = x | h)π(h)

∑

h′∈H P(ε = x | h′)π(h′)
.

We then define a decision setG = {gA, gU}, wheregA means
we decide that the prover is an attacker andgU means we
decide that the prover is a user. Finally, we define a loss
functionL : G×H → R, such thatL(g, h) is our loss when
we decideg andh is the correct hypothesis. The expected loss
of decisiong ∈ G, under our prior and givenε errors out of
n is:

Eπ(L | ε, g) =
∑

h∈H

L(g, h)π(h | ε),

whereEπ denotes expectation with respect to the priorπ. Now
define the decision functionq : {0, 1, . . . , n} → G:

q(ε) ,

{

gU , if Eπ(L | ε, gU ) ≤ Eπ(L | ε, gA)
gA, if Eπ(L | ε, gU ) > Eπ(L | ε, gA).

(19)

This decision function minimisesEπ L by construction (c.f.
[15] ch. 8). The following remark is applicable in our case:
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Remark 1. Assume i.i.d errors with εi ∈ {0, 1}, so that we
can use a binomial probability for P(ε | h). Set the loss
function L to be L(gU , A) = ℓA, L(gA, U) = ℓU and 0
otherwise. Then the decision function (19) becomes equivalent
to:

q(ε) ,

{

gU , if ε < τb

gA, if ε ≥ τb,

where

τb ,
n ln 1−pU

1−pA
− ln[ρπ(A)

π(U) ]

ln 1−pU

1−pA
− ln pU

pA

Proof: We start by calculating the expected loss for either
decision. First:

Eπ(L | ε, gA) = ℓUπ(U | ε) = ℓUπ(U)P(ε | U)

π(A)P(ε | A) + π(U)P(ε | U)
,

due to our choice ofL andπ. Similarly,

Eπ(L | ε, gU ) = ℓAπ(A | ε) = ℓAπ(A)P(ε | A)
π(A)P(ε | A) + π(U)P(ε | U)

.

Combining the above expressions, the decision function (19)
can then be written so that we make decisiongU if and only
if:

ℓAπ(A)P(ε | A) ≤ ℓUπ(U)P(ε | U).

Finally, replacing (17) with meanspA, pU respectively and
taking logarithms we obtain:

ln[ρπ(A)/π(U)] + ε ln
pA
pU

≤ (n− ε) ln
1− pU
1− pA

,

as a condition for decidinggU . With some elementary manip-
ulations, we arrive at the required result.

Given the conditions of the previous remark, it is easy to
see (c.f. [15] ch. 8) that the decision functionq minimises
the Bayes risk:

Eπ(L | q) = π(A)P(ε < τb | A)ℓU + π(U)P(ε ≥ τb | U)ℓA.
(20)

Furthermore, forπ(A) = π(U) = 1/2, we obtain (16). In
addition, this choice also minimises an upper bound on the
worst-case expected loss since:

max
h∈H

E(L | h, q) ≤
∑

h∈H

E(L | h, q) = 2Eπ(L | q).

for uniform π.
Finally, the asymptotic optimality of Bayesian testing gen-

erally follows from Bayesianconsistency (c.f. [15] ch. 10).
More specifically, [17] has proved the asymptotic optimality
of Bayes solutions for hypothesis testing of the type examined
here.
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