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Abstract—We derive bounds on the expected loss for authenti-  This papet performs an expected loss analysis of the
cation protocols in channels which are constrained due to noisy guthentication problem. This is necessary, because ofdhe n
conditions and communication costs. This is motivated by a trivial cost of increasing the number of rounds the lack

number of authentication protocols, where at least some part f f h | and th d to trade off optimall
of the authentication is performed during a phase, lastingn Oof an error-iree channel an e need to trade oif opumally

rounds, with no error correction. This requires assigning an the costs of incorrectly authenticating an illegitimateitgnor
acceptable threshold for the number of detected errors and failing to authenticate a legitimate one.

taking into account the cost of incorrect authentication and We ol th bl in a decision-th tic f K W
of communication. This paper describes a framework enabling € place the problem In a decision-theoretic iramework. Ve

an expected loss analysis for all the protocols in this family. assign a losg, to the event that we authenticate a malicious
Computationally simple methods to obtain nearly optimal values party A—which we call theattacker—a loss/;; to the event
for the threshold, as well as for the number of rounds are that we fail to authenticate a valid paty—which we call the
suggested and upper bounds on the expected loss, holding,eee anqd a lose/p, for each round of the challenge-response
uniformly, are given. These bounds are tight, as shown by a S ) -
matching lower bound. Finally, a method to adaptively select phase, suc'h.that the total communlgathn co§t£|§. Adding

both the number of rounds and the threshold is proposed for a @ non-negligible cost to the communications is of fundamient
certain class of protocols. importance in resource-constrained environments. Oikerw

n can be made as large as necessary to make the probability
of authentication mistakes infinitesimal. Our goal is tcesel

n and 7 so as to minimise thexpected loss E L of the
authentication system. This is achieved through a finitepdam
analysis.

I. INTRODUCTION

Traditionally [1], [2], authentication is assumed to beitak
place on an error-free channel, and error analysis is pagadr
separately from cryptographic analysis of protocols. Here The paper is organised as follows. Section Il introduces
a number of authentication protocols have been proposed [gPtation and our framework. Section Il contains txpected
[11], where at least some part of the authentication is pdfss analysis under noise. In particular, Sec. Ill-A suggests
formed during a Cha”enge-response phase |agﬁr@unds a method to calculate the threshold aCCCJmpaniEd by finite
with no error correction, due to a need to detect relay astackemple upper loss bounds and a matching lower bound, while
by timing delays. The noise necessitates the acceptanceS6f. !lI-B provides a further loss bound by selecting an
some responses which are not perfectly correct. In additidiear-optimal number of rounds. These results only require
increasingn carries a significant cost. The problem is to strik&V0 reasonable assumptions: that the expected error of the
an optimal balance between the increased number of rour@iéacker is higher than that of the user and that the errers ar
the probability of falsely authenticating an illegitimaperty, independent in each round, something that can be achieved
and failing to authenticate a legitimate party. by appropriate protocol design. Section IV applies the abov

For example therapid-bit exchange phase in an RFID analysis to a number o.f.currently used protogols. Section V
distance-bounding protocol (i.e. [9]), satisfies thes¢edd. SU99ests a high-probability method for estimating the okén
The phase lasts rounds, where an equal number of challengd¥is€ and presents the results of simulation experimeats th
and responses are sent. Since there is no error correcff@fPare our choice of threshold with other approaches doase
during that phase, some responses of a legitimate user may’Bethresholds derived using asymptotic approximations. Fi
erroneous. This necessitates the use of a tolerance thitesfg!!y: Sec. VI concludes the paper with a discussion of eellat
7, such that if the number of erroneous responses is low&prk- For completeness, the appendix provides some useful
than, the communicating party is nevertheless authenticaté/Xiliary results regarding the finite sample and the asptrgt

In addition, while increasing the number of rounds decreagderivations.

the probability of incorrect authentication, it also inases

communication costs. The problem then is how to seleet

in an optimal manner. Lpreliminary versions of this paper were published as arQi910278 [12].



Il. PRELIMINARIES loss when the proveP is either the legitimate usdy or the

We consider sequences= z1,...,z, with all z; in some attackerA is given by:
alphabetX and z € x". We write X* £ (J>7 A" for nly + by, (ffe>randP=U
the set of all sequences. We uSeto indicate a definition. L="3ntmir ’ if _ dP = A 1)
P(A) denotes the probability of evem, while E denotes sl HesTandl=
expectations so thak(X | A) = > quP(X = u | A) nlp, otherwise
denotes the conditional expectation of a random variabd¢med with this information, we can now embark upon an
X € QwhenA is true. Finally,[ {A} is an indicator function expected loss analysis. We wish to devise an algorithm that
equal tol when A is true ando otherwise. guarantees aopper bound on the expected losE L of the

We consider additive-error challenge-response autt@ntiguthentication system. To start with, we note that the eeglec

tion protocols. In such protocols, a verifigt grants access |oss when the communicating party is an attacker the user
to a prover P, if the latter can demonstrate its identity/, is given respectively by:

via possession of a shared secret. The protocol has three

phases: (i) An initialisation phase. (i) Ahallengetesponse  E(L [ A) =nlp +Pe <7 [ A) - la+Ple27[A)-0 (2)
phase, lasting: rounds, performed without error correction E(L | U) =nlp+Ple<7|U)-0+Ple>7|U) Ly (3)
under noisy conditions. (iii) A termination phase. Durirfget
challenge-response phase the verifiel) sendsn challenges
C1,-..,Cn, With ¢ € X, to the proverP, which responds
by transmittingn responses-,...,r,, with r, € X. We L £ max{E(L | A),E(L |U)} >EL (4)

usec = (cx)p_,, andr = (r)}_, to denote the complete

challenge and response sequences respectively. The rvayrifi%é vae c;?n find ar; exptr.esTllon g?qt bom:)nds gth A) and ted
uses an error functiofi : X x X — [0, 1] to calculate an error (L | U), we automatically obtain a bound on the expecte

e; = E(ry, ¢;) for the i-th round. The errors when interactinglOSS'EL'
with a valid user may be non-zero due to noise constraints Ax Choice of threshold

the channel. However, as the attacker has to resort to ggessi We want a threshold- such that no matter whether the

the responses, the expected error of the attacker should & e p is the attacker! or the legitimate usel the expected

higher than that of the user. , ___lossE(L | P) is as small as possible. As wecrease the
In order to trade off false acceptances with false rejestion, ..choidr E(L | P = U) decreases, while E(L | P = A)

we use a t_hreshold value, such that a prover is accepteqncrea% and vice-versa. Intuitively, to minimise the worst-
if and only if the total error observed is smaller thanThe ... expected loss, we can ussuch tha(L | P = A, 7) =
verifier V calc_ulates the .total errar = >0 | &;, and rejects E(L | P = U,7). A thresholdr minimising an upper7 bound
the proverP, if and only if ¢ > 7. on the worst-case expected loss is given in Theorem 1. As

The relation ofe to the challenge and response strings an intermediate step, we obtain a bound on the worst-case

and r strongly depends on the protocol. In order to mak@xpected loss foany given thresholdr. Formally, we can
our analysis generally applicable, we make the foIIowinghOW the following:

assumption about the protocol.

The expected loss is in either case bounded by therst-case
expected loss:

Lemma 1. Let ¢; € [0, 1] be the error of the i-th round. If, for
all i > 0, it holds that E(g; | A) > pa and E(e; | U) < py,
for some p4, py € [0, 1] such that npy < 7 < npa, then:

Assumption 1. We assume there exists some ps < E(g; | 4),
a lower bound on the expected per-round error of the attacker
and some py > E(e; | U), an upper bound on the error of
a legitimate user. In addition, we assume that the protocol  £(n;7) £ nlp 4+ max {e*%(npufr)zgwe*%(npAfT)QgA}

is such that all errors are independently (but not necessarily
identically) distributed. > max{E(L | A),E(L |U)} >EL (5)

These bounds depend on the noise during the challenge-
response phase and on the protocol under consideration. We Proof: The expected loss wheR = A, is simply:
shall return to them in section IV.

lll. EXPECTED LOSS ANALYSIS E(L]A)=nlp+P (Z & <T ’ A> la
We now specify our potential losses. For every round of the ‘
F:ha!lengeresponse phase, we sgfft_ar lossl g, d.u.e to the cost <nlp+P Zgi —nE(e | A) <7 —npa ) Aley
in time and energy of transmission. In addition, we suffer a >

loss of /4 for each false acceptance and a ldssfor each

_%("I)A—T)z
false rejectiorf. Given that we performn rounds, the total <nlp+e la;

) o o the last two steps used the fact thigt:; | A) > pa and the
These losses are subjectlvely_ set to appllcatlon—depewa_dues. Clearly, Hoeffding inequality (18). Specifically, in our case, Lemma 3
for cases where falsely authenticating an attacker the itrigasevere £ 4 g Inequality (15). Sp Yy, In ,
must be much greater thay. (page 7) applies withX; = ¢;. Then, it is easy to see that



wi = E(g; | A) for all ¢ andb; — a; = 1, soP(e < npa + Proof: Substitute (7) in the first exponential of (5) to
nt | A) < e 27", By settingT = np4 + nt, we obtain obtain:
t = (t—np4)/n, which we can plug into the above inequality, 2 w2 CaA2 _In2p
thus( arriv;iDng)/at the required reZul?. e e (P = e A e AT Uy Ly
The other case” = U, is handled similarly and we |t js easy to see that the exact same result is obtained by
conclude thai(L | U) < nlg + e~ = ("Pv =774, B substituting (7) in the second exponential of (5). Thushbot
The given upper bound is tight, as can be seen by the[, | A) andE(L | U) are bounded by the same quantity and
following lemma, which proves a matching lower bound fogonsequently, so imax {E(L | A),E(L | U)}. Thus,

the example of Bernoulli-distributed errors. o
. , _ L(n,75) <nlp +e 28 \/laly,

Lemma 2. Modifying our assumptions slightly, let ¢; € {0, 1} .

be the Bernoulli-distributed error of the i-th round, such that, ~where we simplified the bound by noting thdt5 > 0. =

for all i > 0, itholdsthat P(e; | A) = pa and P(¢; | U) = pu, The intuition behind the algorithm and the analysis is that

for some p4,py € [0,1] such that npy < 7 < npa, then: it is possible to bound the probability thdatmakes less errors

EL > min{E(L | A),E(L | U)} than expected, or theﬂf_ makes more than expected. For this
reason, ther* chosen in the theorem must lie betweep;

>nlpg + (g)Tmin {éApQ(l —pa)" " Lupy(1 —pU)"‘Ténd npa. This also implies a lower bound on the number of
(6) roundsn.

B. Choice of the number of rounds

Proof: The expected loss wheR = U, is simply: Using similar techniques to those employed for obtaining
a suitable value for the threshold, we now indicate a good
E(L|U)=nlg+P (Z € >T ‘ U) Ly choice for the number of rounds and provide a matching
i bound on the expected loss.
>nlg + P (ZEZ -7 ‘ U) Oy Theorem 2. Assume {4, ¢y, £ > 0. If we choose 7 = 7;¢ and
i v a VI+2CK -1
ny . n=it s ©)
=t + (") = g0 c
npuN T where C = A? and K = /{4l /{5, then the expected loss
> nlp + (T) (1—=pu)" "ty E L is bounded by:
The other caseP = A, is handled similarly and we conclude V8Ip(Laly)t/4

Ak oAk A . —
that E(L | A) > nlp + ("24)7 (1 — pa)"~"la m P17 <L = VK/C Uy A
To see that the upper and lower bounds match, consider that
P =U andt = nc with ¢ < 1. Then Lemmas 1 and 2 give
us: Proof: We shall bound each one of the summands of (8)
nlp + e 2Pu= 0> gy (Wl) (1= po)" "ty by /2K /C - {g. For the first term we have:
T

Vv1+2CK -1 V1+2CK

(10)

~2mpy-7)? 5 (MPUNT (| yneT lp = lp < ¢
e v > ( = ) (1—-pv) ntp C B = C B
efz(prc)Qn > eleln U 4 (1—c) In(1—pu)In V2OK 2K

- =T¢ T\

Thus, the upper and lower bounds given for the expected loss , _
(E L) are of the same order with regard /o For the second term, by noting thett > 1 + 2, we have:

Having bounded the loss suffered when choosing a specific VElila Klg 2K/gp

.. . ,e [A . 67%A2 < o = —
threshold, we now choose a threshaifl that minimises the VU 1+ 2A7  1+28  14/1+20K
above bound for fixedw. In fact, we can show that such a

N

threshold results in a particular upper bound on the expecte < 2Kl < 2Klp — %gB_
loss. T V1+2CK ~ V2CK C
Theorem 1. Let p 2 £, /¢y and select Summing the two bounds, we obtain the required resul
This theorem proves that owvorst-case expected loss L
s A n(patpu) lnp (7) 9rows sublinearly both with increasing round cost (witherat
" 2 4A O(€'/?)) and with increasing authentication costs (with rate

If npy < 7 < npa, then the expected loss E L is bounded by: ~ O(e!/*)). Furthermore, thexpected loss is bounded symmet-

Sy 2 YN rically for both user and attacker access. Finally, thera is
E(L[n,70) < La(n) = nlp + €73 bato. (8) strong dependence on the marginbetween the attacker and

with A £ py — py. the user error rates, which is an expected result.



IV. ANALYSIS OF RFID THRESHOLDED PROTOCOLS 10 Cln) w =102
maxp E(L | P,n), w = 102

Curre_ntly_, the most \_Nell-known protocols e_mploying an g it E(L |£7;7(Z W= %8:1 .....
authentication phase without any error correction and unde
resource constraints afFID distance bounding protocols.
For that reason, we shall examine the properties of two such
protocols, for which it is possible to derive expressions fo
pa,PU, given a symmetric channel noise. d
More precisely, due to noise in the physical medium, in any WM
exchange betweew andP, the former may send a symhole "
X, while the latter may receive a symhble X" such thatr #
Z. We shall denote the probability of erroneous transmission
the data layer aso 2 P(i = j | = # j, = # #). For simplicity, o1 2 20 0 0 100 120
we shall only treat the case of symmetric channel noise such n (number of rounds)
that P(z =y [z #y) = \X\%U Yy #Fx, z,y € X (a) TheExpected Loss E L and the bound on thExpected Loss £; vs. the
The Sviss-KNIFE protocol [11] and the variant lfloMI [7]  number of bitsn exchanged during the rapid single bit exchange for various
are additive-error authentication protocols satisfying as- ~ Values of channel noise.
sumptions. It is easy to show (for details see [7]) that, for 100
those two protocols, under channel naisghe expected error
boundsp 4, py are given byps = “T“ py = 2w, where we
note in passing thapy > py and sow < 1. Finally, by
substitutingA = ps4 — py = 1522 in (8), we obtain the
following bound for Sviss-KNIFE and HTOMI:

Expected loss
=

10

Expected loss

 n(1-3w)? L P -
EL<nlg+e 5  -/laly, (12) : S —— /;
. I
We have performed a number of experiments to test the S Mﬁ -
efficacy of these protocols, when used in conjunction with ou el maxp JEEL [:Pé %'3:)
suggested, as well as the optimal values of the threshold and //@M N
number of rounds. In all of the experiments shown here, we ) 0.05 0.1 0.15 0.2 0.25 0.3
chose the following values for the lossds; = 10, /y = 1, w (channel noise)
(p =107 (b) The worst-case expected Lo&sand the boundsC; and Ly from
Figure 1(a) depicts the bound (11) on the expected loss, B§orems 1 and 2 respectively vs. the channel errorwate
well as the actualE L calculated via the binomial formula, Fig. 1. Comparison of all losses.

when the threshold;, calculated from (7), is used. We plot

both the expected loss and the bound for two different cHanne

noise levelss € {10~',102}, where the number of roundsvery close tac;, this implies that the bound of the Theorem 1
n varies from1 to 256. Obviously, the bound is greater thartan be further tightened for smai.

the actual expected loss, while it approaches it exporntia

fast asn increases. In addition, the losses are higher when the V. ESTIMATING w

amounr;c of noise increases. hat th L | In this section, we discuss how it is possible to calculate
Furthermore, we can see that there are minimising valugs, channel error rate, which is used in the expressions for

of n for all cases. While they do not. cqincide for the boungA’pU_ This can be done by leveraging the coding performed
and the actuaxpected |oss, they are within a factor of two of y,ing the initial and final phases of the protocol. We assume

each other. Finallyp*, the value ofn minimising the bound, 4o coding functiond : X™ — X%, with & > m, and
is always greater than* = argmin, maxpea,v B(L | P,n), 4 metricy on X* (where usually¥ = {0,1} and~ is the
the value ofn that minimises theworst-case expected loss. Hamming distance) such that:

Since the probability of incorrect authentication always d

creases with increasing, this implies that any additional Ymin = min {y(®(z), ®(y)) : 2,y € X™ 2 £y} (12)
losses incurred by using* is due to transmission costs only. o _ _ )

Figure 1(b) examines the effect of noise in more detalf the minimum (Hamming) distance betyveen valid codewords.
In particular, it depicts thevorst-case expected loss for the FOr @ givena € X, the source transmits = ¢(x) and the
optimal number of rounds*, denoted byE(L | n*) in the smkrecelves;ﬁ, with ¢, ¢ € X™. As.before, we assume that the
legend. This is of course smaller tha@{L | 7*), the loss Physical channel has a symmetric error rate- P(¢; # ¢;),

suffered by choosing.*, with the gap becoming smaller for‘f"hAere i ‘denoteAs the-th bit of ¢, This is then decoded as
larger error rates. Since when this occurs, ¢kgected lossis & = argmin {7(¢, P(y) :y € Xm}- Let ¢ be the number of



errors in the string{b, or more precisely = v(¢, gz@). Letd £ is derived via a likelihood ratio test, which is asymptoliica
7(@(@),&5) be the distance between the closest valid codewongtimal (c.f. [15], [16]) but they do not consider specific
®(&) and the received. If 6 < (Yuin — 1)/2, thend = 4. losses. Since in our case we have unequal loégesnd ¢,

The crux of our method for estimating relies on the we re-derive their threshold via a Bayesian test (to which a
number of errorg being less thaitymi, —1)/2, in which case, Bayesian formulation of the Neymann-Pearson lemma [15]
the estimated number of errofswill equal 6. Let & 2 £ be applies) to obtain:

n

our empirical error rate. In that case, the expected engbiric

nln :=PU _n p

error rate equals the true error rate. More formally: = M Tp, TP (16)
In 172U — In £V
E (‘D | 0 < (’Ymin - 1)/2) =w. (13) 1-pa pa

For equal lossesp = 1, and 7 equals the threshold used
If & > (vmin — 1)/2 then the protocol fails in any case, dugn [14]. Such tests have good asymptotic properties [15]].[1
to decoding errors in the initial or final phases. If not, themterestingly, for smallA, the form of7 is similar to7*: Let
the above equation holds and we can obtain high probabili§ysuch thatp 4, = p+ A/2 andpy = p— A/2. Then (16) can
bounds forw via the Hoeffding inequality (Appendix, Lemma pe approximated by* = np — ﬁ(lA—ﬁ) In p. More details on

3). In particular, it is easy to show that, for anye [0, 1]: the derivation of (16) are given in Appendix B on page 7.
m2/o Figure 2 depicts theworst-case expected loss I as a

P <w —w| >4/ ) <0, (14) function of the actual noise. Figure 2(a) showd. using the

2k thresholdr derived from ourexpected loss analysis (7), while

by substituting the square-root term into (18), and setting: N Figure 2(b) we use the asymptotically optimal threshold
w, N X, = 6, a; = 0, b; = 1. Consequently, for the BISs- of (16). In both cases, we pldt, while the actual noise

KNIFE family of protocols the following values fop, and is changing, for a number of different cases. Initially, we
pu hold with probability1 — 4 investigate the evolution ol for three arbitrarily chosen

valuesw € {1071,1072,10~3}. Additionally, we examine the
14+ @ In2/6 . 2In2/6 evolution of theworst-case expected loss, when the noise is
PAa= "\ g Pu= 2w\ (15) empirically estimateds = 0/n and finally whenp, and py
are calculated via equation (15) withe {10~1,1072}.
ofAs it can be seen in Figure 2, in all cases (using ours
Figure 2(a) or Baigéres et al. [14] threshold Figure 2(b))

the worst-case expected loss is very low for small values of
A. Evaluation Experiments the actual noise and increases sharply when the actual noise

We have performed some experiments to evaluate gxceeds the value ab~1. Itis interesting to see that when we
methods in a more realistic setting, involving an RFID dig!Se the optimistit high probability estimates fopa, py, we

tance bounding protocol with eapid-bit exchange phase. We ©btain almost always better performance than simply gogssi
perform simulations for two cases: Firstly, wheregitimate the noise, or using the plain empirical estimatedirectly.
user U is trying to get authenticated and secondly, when &rrthermore, using the asymptotically optimal threshdié)(
adversary A is trying to perform a mafia fraud attack [13].W€ observe a deterioration in the results. Thus, our approac
We have estimated theorst-case expected loss by running results in a clearly dominating performance over other meth
10* experiments for each case, obtaining a pair of estimaf2ds: ) , ,

E(L | A), E(L | U) by averaging the losg, as defined in As mentioned in Sec. VI, the choice of the threshold by
(1), incurred in each experiment and taking the maximum S@igreres et al. [14] is only asymptotically optimal. Ours,
the two. In all of the experiments shown in this section, wihile not optimal, gives a worst-case expected loss guaeant
chose the following values for the lossés; = 10, /; = 1 for any finite sample size. Thus, it has better performance

{5 = 102, while we usedt = 2'° for the coded messagesWhe” the asymptotic approximation is not sufficiently good,
in the initialisation phase. which occurs when both the number of roundsind the gap

A are small.

Experimental investigations presented in the next sedtien
dicate that this choice has good performance in terms
expected loss.

The actual valuep 4, py depend onw, which is unknown.
We compare three methods for choosipg,py. Firstly,
guessing a valug for the channel noise. Secondly, using the i
maximum likelihood noise estimate = 4/k. In both cases, e have performed the first, to our knowledge, expected
we simply use as described at the beginning of Sec. IV tg_)ss analysis of additive error challenge-response atittzen _
obtainp4, py. In the third case, we use the high-probabilit§!on protocols under channel constraints. Such an analysis
bounds (15) fop 4, py, with an arbitrary value of. is necessary, because of the inherent cost of increasing the

In the first experiment, we use the nearly-optimal threshofymber of rounds: and the need to trade off optimally the
and number of rounds that we have derived in our analysis. Iny , , o " _ ,
h d . t we replace our choice of threshakd wi Experiments with pessimistic high probability estimates foe hoise
the second experiment, we rep _ dhowed a significant increase in the number of rounds usedshwisulted
a choice similar to that of Baigmes et al. [14]. Their thresholdin a higher expected loss.

VI. CONCLUSION



challenges and responses may be corrupted. Thus, a legitima
user may fail to get authenticated. Their protocol (hentbkfo
HAKU), employedn rounds and authenticated any prover who
made a number of mistakedess than an acceptance threshold
7, SO as to reduce the number of false rejections. Using the
binomial distribution and an assumption on the error rates
they give expressions for thialse accept and false reject
probability as a function ofn and 7, but they provide no
further analysis. Nevertheless, they indicate that the barm

of challenge-response rounds in the rapid bit exchange
phase should be chosen according to the expected error rate.
Kim et al. [11] extend this approach with then8&s-KNIFE

Expected loss

001 o1 protocol by considerinthree types of errors. Finally [5], rather
w than using a threshold, proposed a protocol (henceforth
(a) Our threshold ECMAD) using an error correcting code (ECC). ECMAD,

which extends the MAD protocol [19], uses onlyof the n
total rounds for the challenges and responses. The remgainin
n—k rounds are used to transmit the, k) ECC. This has the
effect of achieving better security (in terms of false atanpe
rates) with the same number of rounds
All these approaches use rounds in the noisy authen-
tication phase. However, they do not define the optimal
They simply state that the probability of authenticatingsaru
becomes much higher than the probability of authenticating
an attacker as: increases. However, a large value of
is incompatible with the requirements of many applications
and devices (i.e. high value of leads to high overhead
for resource-constrained devices). This can be modelled by
001 w 01 assigning arexplicit cost to every round, which should take
into account the transmission energy, computation and time
overhead. This cost has so far not been explicitly taken into
Fig. 2. The worst-case expected loss as a function of noisgl@i the evolu- consideration.
tion of the loss as noise changes, foranqmberofdiffere_mlals:a‘é_rsétly, fgrgthe Another work that is closely related to ours is [21], which,
case where we arbitrarily assume a noise valug {10~+,1072,107°}. . . S
Secondly, for an empirically estimatedl — &/n, and finally forpa,py ~ 9VEN @ required false acceptance and false rejection rate,
calculated via equation (15) with € {10~1,1072}. provides dower bound on the number of required rounds. This
analysis is performed for bothAKu and ECMAD. However,
it assumes that the number of roundgsould be large enough
costs of incorrectly authenticating an illegitimate gntior for the binomial distribution of errors to be approximately
failing to authenticate a legitimate one, as well as the laglormal. Our analysis is more general, since it uses finite-
of an error-free channel. In order to achieve this, we made tsample bounds that hold for any bounded error function.
assumption of bounds on the expected errors of a user and aRecently, Baigires et al. [14] have given an analysis
attacker. In addition, we assumed that these are independ®n the related topic of distinguishing between a real and
from errors in the previous rounds. a fake solver of challenge-response puzzles. More prgcisel
The rapid-bit exchange phase considered in parts of this they study CAPTCHA-like protocols and provide a threshold
paper was introduced in [3] to compute an upper bound on th&ich minimizes the probability of error in these protocols
distance of the proveP from the verifier. This is composed The main differences between the analysis presented in this
of n challenge-respons®unds, used to calculate a round-trippaper and [14] can be summarised below: (a) We perform an
time and thus place a bound on the distance. Subsequergkpected loss analysis rather than an error analysis. (b) Ou
a broad range oflistance bounding protocols were proposed, bounds hold uniformly, while [14] uses an asymptotically op
both for RFID [5], [7], [9]-[11], as well as other wirelesstimal distinguisher. (c) We consider bounded errors rathan
devices [6], [19], [20]. {0,1} errors for each challenge-response. (d) We additionally
Hancke and Kuhn [9] were the first to indicate that since tH§OPose a method to estimate channel noise. This is of course

rapid-bit exchange phase is taking place in a noisy channefiot applicable in the context of [14], due to the different
setting.

“Consequently, error probabilities drop exponentially faslike the exam- A More general work on authentication under noisy condi-
ples given in [18]. tions was presented in [22]. This provided tight informatio

Expected loss

(b) Asymptotic threshold



theoretic upper and lower bounds on the attacker’s succaesguential decision making under uncertainty”, Grant Nemb
in impersonation and substitution attacks, proving that 237816 and the FP7 project “IM-CLeVeR - Intrinsically Moti-
decreased with noise. However, our analysis shows thath whated Cumulative Learning Versatile Robots”, grant agresm
one considers losses due to communication overhead aed fiN® FP7-ICT-IP-231722.

rejections of users, the expected loss increases, which is a

natural result.

In this paper, we perform a detailesipected loss analysis A Useful formulas
for a general class of additive-error authentication pok® If X1,...,X, are independent Bernoulli random variables
in a noisy channel. The analysis is performed by assigningavth X, € {0,1} andP(X = 1) = u for all k, then
loss /g to each round, and losség, ¢y to false acceptance n w
and false rejection respectively. > _ <”> k(| _ )k

We show how a nearly-optimal threshofgf for a given g (; K= u) ,;) k)" = a7
number of rounds can be chosen and giveorst-case bounds . o o .
on theexpected loss for that choice. Thus, the bounds hold ncérzrgls probability can be bounded vidoeffding’s inequality
matter if the party that attempts to get authenticated ieeia '
legitimate usell/ or an attackerd. This extends our previousLemma 3 (Hoeffding) For independent random variables
work [7], which proposed a newlistance bounding protocol X, ..., X,, suchthat X; € [a;, b;], with u; = E X; and ¢ > 0:
(Hitomi) and only calculated a value for the thresheld

APPENDIX

without providing any bounds. P ZXZ' > Z’“ +nt | <exp (_n2n2t2)
We also show how a nearly-optimal number of rourds im1 i—1 > i1 (bi — ai)?

can be chosen and give further bounds on ekected loss. n n Im242

The bounds hold foany bounded error function, and notonly P (Z X; < Zﬂi - nt) < exp (nz) .

for {0, 1} errors> Furthermore, they are valid for any since i=1 i=1 2iza(bi — ai)

they are based on probability inequalities for a finite numbe (18)

of sample$. Thus, they are considerably more general to the
bounds of [21]. B. On Bayesian hypothesis tests

Finally, we proviQed high-probability estimates for the One way to obtain an asymptotically optimal threshold is to
current noise Iev_el_ in the c_hannel by leveraging the COd_'@nploy a Bayesian hypothesis test [15]. This requires defini
performed in the initial and final phases of the protocol,ahihi a prior probability on the possible hypotheses. In our céee,
takes place in a coded channel. This enables us to Signlﬁcarﬁypothesis set ig] = {A,U}, on which we define a prior

weaken assumptions on knowledge of the noise level in g, a ity . For {0, 1} errors, the probability of observing
channel and in turn, provide an authentication algorithnictvh ¢ errors out ofn observations is given bf(c | A) and

has low expected loss with high probability. Experimemtall p . | 7y for the attacker and user respectively and it follows

we obtain uniformly superior results to guessing or dlreg binomial distribution with parameters,, py respectively.

empirical noise estimates. Finally, we repeated those reXP&iven an observed errar, the posterior probability of any
iments with an asymptotically optimal threshold similar t%ypothesish c His:

that used by Baiggres et al. [14]. Our results indicate a

significant improvement through the use of a threshold with wlh | e=1) = Ple=z|hn(h)

uniform, rather than asymptotic, guarantees. Conseqguentl YonenPle=a | b )n(N)

it is our view that algorithms motivated by an asymptotigyes then define a decision s6t— {ga,gu}, whereg, means

analysis should be avoided in the finite-sample regime ot MQS, yecide that the prover is an attacker apd means we

challenge-response authentication protocols. decide that the prover is a user. Finally, we define a loss
Our analysis is particularly significant for areas of commyynetion L - ¢ x H — R. such thatZ(g, ) is our loss when

hications where challenges and responses are costly ame W, gecidey and/ is the correct hypothesis. The expected loss

there exists significant uncertainty about the correctoéasy ¢ decisiong € G, under our prior and given errors out of
single response. n is;
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Remark 1. Assume i.i.d errors with ¢; € {0,1}, so that we
can use a binomial probability for P(¢ | h). Set the loss
function L to be L(gy,A) = L4, L(ga,U) = £y and 0
otherwise. Then the decision function (19) becomes equivalent

(1]
(2]

to: [3]
q(E) N qu, if e < Th (4]

ga, if e Z Tb,
[5]

where
1— m(A) (6]
e nln 1_;’: - ln[pW(U)]
17

In = —Inox 7]

Proof: We start by calculating the expected loss for either
decision. First: 8
tyn(U)P(e | U)
7(A)P(e | A) +n(U)P(e | U)’

&l
(10]

Ex(L|e,94) = tom(U|¢) =

due to our choice of. andx. Similarly,
[11]
Lam(A)P(e | A)
T(A)Pe | A) +m(U)P( | U) g

Eﬂ'(L | eng) = eAﬂ-(A | 5) =

Combining the above expressions, the decision function (19
can then be written so that we make decisignif and only [13]
if:

(14]
lam(A)P(e | A) < Lym(U)P(e | U).

Finally, replacing (17) with meang4,py respectively and [1°!
taking logarithms we obtain: [16]
1—py [17]

In[pr(A)/7(U)] +eln pA <(n—¢)ln T pa

bu

" - i . [18]
as a condition for decidingy;. With some elementary manip-

ulations, we arrive at the required result.
. . . . [[19]
Given the conditions of the previous remark, it is easy to
see (c.f. [15] ch. 8) that the decision functignminimises
the Bayes risk: (20]
E (L|q)=m(A)Ple <1 | Ay +7(U)P(e > 1 | U)la.
(20)

Furthermore, forr(A) = n(U) = 1/2, we obtain (16). In 2]
addition, this choice also minimises an upper bound on the
worst-case expected loss since:

[21]

(23]

E(L | h,q) <
max (L1h,q) <

S E(L | hq) = 2B (L | q).

heH

for uniform 7.

Finally, the asymptotic optimality of Bayesian testing gen
erally follows from Bayesiarconsistency (c.f. [15] ch. 10).
More specifically, [17] has proved the asymptotic optinyalit
of Bayes solutions for hypothesis testing of the type exauahin
here.
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